Phase diagram of three-dimensional dynamical triangulations with a boundary

[1]  J. Kogut,et al.  Phase structure of dynamical triangulation models in three dimensions , 1997, hep-lat/9712011.

[2]  J. Kogut,et al.  Singular structure in 4D simplicial gravity , 1997, hep-lat/9709007.

[3]  J. Klauder Is Quantization Geometry , 1996, quant-ph/9604032.

[4]  Bas V. de Bakker Further evidence that the transition of 4D dynamical triangulation is 1st order , 1996, hep-lat/9603024.

[5]  Z. Burda,et al.  Focusing on the fixed point of 4D simplicial gravity , 1996, hep-lat/9601024.

[6]  G. Thorleifsson,et al.  Singular vertices and the triangulation space of the D-sphere , 1995, hep-lat/9512012.

[7]  J. Ambjorn Quantization of geometry , 1994, hep-th/9411179.

[8]  Z. Burda,et al.  Z2 GAUGE MATTER COUPLED TO 4-D SIMPLICIAL QUANTUM GRAVITY , 1994 .

[9]  S. Catterall Simulations of dynamically triangulated gravity - an algorithm for arbitrary dimension , 1994, hep-lat/9405026.

[10]  S. Solomon,et al.  Monte Carlo simulation of 2D quantum gravity as open dynamically triangulate random surfaces , 1993, hep-lat/9310016.

[11]  J. Kogut,et al.  Three-dimensional quantum gravity coupled to gauge fields , 1993, hep-lat/9304016.

[12]  J. Kogut,et al.  Three-dimensional quantum gravity coupled to Ising matter☆ , 1992, hep-lat/9205029.

[13]  D. Boulatov,et al.  The vacuum in three-dimensional simplicial quantum gravity , 1992 .

[14]  J. Hartle,et al.  Wave Function of the Universe , 1983 .

[15]  R. Sorkin,et al.  Boundary terms in the action for the Regge calculus , 1981 .

[16]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.