Reconfiguration of Minimum Steiner Trees via Vertex Exchanges

In this paper, we study the problem of deciding if there is a transformation between two given minimum Steiner trees of an unweighted graph such that each transformation step respects a prescribed reconfiguration rule and results in another minimum Steiner tree of the graph. We consider two reconfiguration rules, both of which exchange a single vertex at a time, and generalize the known reconfiguration problem for shortest paths in an unweighted graph. This generalization implies that our problems under both reconfiguration rules are PSPACE-complete for bipartite graphs. We thus study the problems with respect to graph classes, and give some boundaries between the polynomial-time solvable and PSPACE-complete cases.