Canine osteosarcoma genome sequencing identifies recurrent mutations in DMD and the histone methyltransferase gene SETD2

[1]  Marcus R. Breese,et al.  Genome-Informed Targeted Therapy for Osteosarcoma. , 2018, Cancer discovery.

[2]  J. Flowers,et al.  Origins and geographic diversification of African rice (Oryza glaberrima) , 2018, bioRxiv.

[3]  Julie M. Batten,et al.  DMD genomic deletions characterize a subset of progressive/higher-grade meningiomas with poor outcome , 2018, Acta Neuropathologica.

[4]  S. Molyneux,et al.  Cross-species genomics identifies DLG2 as a tumor suppressor in osteosarcoma , 2018, Oncogene.

[5]  Voichita D. Marinescu,et al.  SETD2 Is Recurrently Mutated in Whole-Exome Sequenced Canine Osteosarcoma. , 2018, Cancer research.

[6]  Jianru Xiao,et al.  Histone methyltransferase SETD2 regulates osteosarcoma cell growth and chemosensitivity by suppressing Wnt/β-catenin signaling. , 2018, Biochemical and biophysical research communications.

[7]  Paul Hoffman,et al.  Integrating single-cell transcriptomic data across different conditions, technologies, and species , 2018, Nature Biotechnology.

[8]  H. Kovar Selective enhancer changes in osteosarcoma lung metastasis , 2018, Nature Medicine.

[9]  Natalie K. Wolf,et al.  Comparative Transcriptome Analysis Quantifies Immune Cell Transcript Levels, Metastatic Progression, and Survival in Osteosarcoma. , 2018, Cancer research.

[10]  S. Armstrong,et al.  SETD2 alterations impair DNA damage recognition and lead to resistance to chemotherapy in leukemia. , 2017, Blood.

[11]  J. Licht SETD2: a complex role in blood malignancy. , 2017, Blood.

[12]  C. Antonescu,et al.  In-depth Genetic Analysis of Sclerosing Epithelioid Fibrosarcoma Reveals Recurrent Genomic Alterations and Potential Treatment Targets , 2017, Clinical Cancer Research.

[13]  Fang Fang,et al.  Molecular genetics of osteosarcoma. , 2017, Bone.

[14]  C. Mazzanti,et al.  Whole-exome analysis in osteosarcoma to identify a personalized therapy , 2017, Oncotarget.

[15]  Daniel Baumhoer,et al.  Recurrent mutation of IGF signalling genes and distinct patterns of genomic rearrangement in osteosarcoma , 2017, Nature Communications.

[16]  Bernat Gel,et al.  karyoploteR: an R/Bioconductor package to plot customizable genomes displaying arbitrary data , 2017, bioRxiv.

[17]  T. Mcclanahan,et al.  Patterns of PD‐1, PD‐L1, and PD‐L2 expression in pediatric solid tumors , 2017, Pediatric blood & cancer.

[18]  Yuan Wang,et al.  Clinical significance of the phosphorylation of MAPK and protein expression of cyclin D1 in human osteosarcoma tissues. , 2017, Molecular medicine reports.

[19]  A. Petrilli,et al.  MAPK pathways regulation by DUSP1 in the development of osteosarcoma: Potential markers and therapeutic targets , 2017, Molecular carcinogenesis.

[20]  Anushya Muruganujan,et al.  PANTHER version 11: expanded annotation data from Gene Ontology and Reactome pathways, and data analysis tool enhancements , 2016, Nucleic Acids Res..

[21]  X. Zang,et al.  Immune infiltration and PD-L1 expression in the tumor microenvironment are prognostic in osteosarcoma , 2016, Scientific Reports.

[22]  J. Cotignola,et al.  Non-myogenic tumors display altered expression of dystrophin (DMD) and a high frequency of genetic alterations , 2016, Oncotarget.

[23]  Gerben Duns,et al.  SETD2: an epigenetic modifier with tumor suppressor functionality , 2016, Oncotarget.

[24]  F. Cunningham,et al.  The Ensembl Variant Effect Predictor , 2016, bioRxiv.

[25]  Li Ding,et al.  Germline Mutations in Predisposition Genes in Pediatric Cancer. , 2015, The New England journal of medicine.

[26]  Florian Engert,et al.  Exome sequencing of osteosarcoma reveals mutation signatures reminiscent of BRCA deficiency , 2015, Nature Communications.

[27]  M. Pennell,et al.  Impact of Toceranib/Piroxicam/Cyclophosphamide Maintenance Therapy on Outcome of Dogs with Appendicular Osteosarcoma following Amputation and Carboplatin Chemotherapy: A Multi-Institutional Study , 2015, PloS one.

[28]  Cheng Wang,et al.  PI3K/Akt signaling in osteosarcoma. , 2015, Clinica chimica acta; international journal of clinical chemistry.

[29]  W. Huber,et al.  Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 , 2014, Genome Biology.

[30]  Julian Gehring,et al.  SomaticSignatures: inferring mutational signatures from single-nucleotide variants , 2014, bioRxiv.

[31]  Lei Shang,et al.  Whole-genome sequencing is more powerful than whole-exome sequencing for detecting exome variants , 2014, Proceedings of the National Academy of Sciences.

[32]  Adam Kiezun,et al.  Complementary genomic approaches highlight the PI3K/mTOR pathway as a common vulnerability in osteosarcoma , 2014, Proceedings of the National Academy of Sciences.

[33]  M. van de Rijn,et al.  Dystrophin Is a Tumor Suppressor in Human Cancers with Myogenic Programs , 2014, Nature Genetics.

[34]  G. Nielsen,et al.  Programmed Cell Death Ligand 1 Expression in Osteosarcoma , 2014, Cancer Immunology Research.

[35]  Li Ding,et al.  Recurrent somatic structural variations contribute to tumorigenesis in pediatric osteosarcoma. , 2014, Cell reports.

[36]  D. Thamm,et al.  Comparison of Carboplatin and Doxorubicin‐Based Chemotherapy Protocols in 470 Dogs after Amputation for Treatment of Appendicular Osteosarcoma , 2014, Journal of veterinary internal medicine.

[37]  S. Mi,et al.  Identification of functional cooperative mutations of SETD2 in human acute leukemia , 2014, Nature Genetics.

[38]  K. Lindblad-Toh,et al.  Genome-wide analyses implicate 33 loci in heritable dog osteosarcoma, including regulatory variants near CDKN2A/B , 2013, Genome Biology.

[39]  Mauricio O. Carneiro,et al.  From FastQ Data to High‐Confidence Variant Calls: The Genome Analysis Toolkit Best Practices Pipeline , 2013, Current protocols in bioinformatics.

[40]  David T. W. Jones,et al.  Signatures of mutational processes in human cancer , 2013, Nature.

[41]  A. Sivachenko,et al.  Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples , 2013, Nature Biotechnology.

[42]  T. Fan,et al.  Tumors of the Skeletal System , 2012, Withrow and MacEwen's Small Animal Clinical Oncology.

[43]  V. Thayanithy,et al.  A genome-wide approach to comparative oncology: high-resolution oligonucleotide aCGH of canine and human osteosarcoma pinpoints shared microaberrations. , 2012, Cancer genetics.

[44]  Joshua F. McMichael,et al.  The Origin and Evolution of Mutations in Acute Myeloid Leukemia , 2012, Cell.

[45]  J. Squire,et al.  The Genetics of Osteosarcoma , 2012, Sarcoma.

[46]  Wendy S. W. Wong,et al.  Strelka: accurate somatic small-variant calling from sequenced tumor-normal sample pairs , 2012, Bioinform..

[47]  W. Bi,et al.  C-Myc overexpression promotes osteosarcoma cell invasion via activation of MEK-ERK pathway. , 2012, Oncology research.

[48]  R. Tadayoni,et al.  Dystrophin Dp71: The Smallest but Multifunctional Product of the Duchenne Muscular Dystrophy Gene , 2012, Molecular Neurobiology.

[49]  K. Lindblad-Toh,et al.  Molecular subtypes of osteosarcoma identified by reducing tumor heterogeneity through an interspecies comparative approach. , 2011, Bone.

[50]  G. Getz,et al.  GISTIC2.0 facilitates sensitive and confident localization of the targets of focal somatic copy-number alteration in human cancers , 2011, Genome Biology.

[51]  N. Carter,et al.  Massive Genomic Rearrangement Acquired in a Single Catastrophic Event during Cancer Development , 2011, Cell.

[52]  Nobutaka Hattori,et al.  Mechanisms of genomic instabilities underlying two common fragile-site-associated loci, PARK2 and DMD, in germ cell and cancer cell lines. , 2010, American journal of human genetics.

[53]  Gerben Duns,et al.  Histone methyltransferase gene SETD2 is a novel tumor suppressor gene in clear cell renal cell carcinoma. , 2010, Cancer research.

[54]  P. Meltzer,et al.  Canine tumor cross-species genomics uncovers targets linked to osteosarcoma progression , 2009, BMC Genomics.

[55]  Steven J. M. Jones,et al.  Circos: an information aesthetic for comparative genomics. , 2009, Genome research.

[56]  P. Tsai,et al.  Influence of genetic background on tumor karyotypes: Evidence for breed-associated cytogenetic aberrations in canine appendicular osteosarcoma , 2009, Chromosome Research.

[57]  F. He,et al.  Histone methyltransferase protein SETD2 interacts with p53 and selectively regulates its downstream genes. , 2008, Cellular signalling.

[58]  I. Gordon,et al.  Evaluation of the mammalian target of rapamycin pathway and the effect of rapamycin on target expression and cellular proliferation in osteosarcoma cells from dogs. , 2008, American journal of veterinary research.

[59]  J. Kirpensteijn,et al.  TP53 gene mutations in canine osteosarcoma. , 2008, Veterinary surgery : VS.

[60]  J. T. Dunnen,et al.  Copy number variation in the genome; the human DMD gene as an example , 2006, Cytogenetic and Genome Research.

[61]  J. Mesirov,et al.  GenePattern 2.0 , 2006, Nature Genetics.

[62]  James A. Cuff,et al.  Genome sequence, comparative analysis and haplotype structure of the domestic dog , 2005, Nature.

[63]  E. Kleinerman,et al.  Osteosarcoma: a randomized, prospective trial of the addition of ifosfamide and/or muramyl tripeptide to cisplatin, doxorubicin, and high-dose methotrexate. , 2005, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[64]  S. Bull,et al.  TP53 mutations and outcome in osteosarcoma: a prospective, multicenter study. , 2005, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[65]  A. Sandberg,et al.  Updates on the cytogenetics and molecular genetics of bone and soft tissue tumors: osteosarcoma and related tumors. , 2003, Cancer genetics and cytogenetics.

[66]  R. Levine,et al.  Tumor Suppressor PTEN is Mutated in Canine Osteosarcoma Cell Lines and Tumors , 2002, Veterinary pathology.

[67]  W. Winkelmann,et al.  Prognostic factors in high-grade osteosarcoma of the extremities or trunk: an analysis of 1,702 patients treated on neoadjuvant cooperative osteosarcoma study group protocols. , 2002, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[68]  J. Wunder,et al.  Comparison of p53 mutations in patients with localized osteosarcoma and metastatic osteosarcoma , 2001, Cancer.

[69]  A. Hasegawa,et al.  Aberrations of the p53 tumor suppressor gene in various tumors in dogs. , 2001, American journal of veterinary research.

[70]  C. Miller,et al.  Status of the p53, Rb and MDM2 genes in canine osteosarcoma. , 1998, Anticancer research.

[71]  P. Terrier,et al.  Loss of heterozygosity of the RB gene is a poor prognostic factor in patients with osteosarcoma. , 1996, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[72]  R. Dubielzig,et al.  Adjuvant therapy for osteosarcoma in dogs: results of randomized clinical trials using combined liposome-encapsulated muramyl tripeptide and cisplatin. , 1995, Clinical cancer research : an official journal of the American Association for Cancer Research.

[73]  K. Ishizaki,et al.  Mutation spectrum of the retinoblastoma gene in osteosarcomas. , 1994, Cancer research.

[74]  D. August,et al.  Malignancy , 2020, Surgical Metabolism.

[75]  Wu Zhiqiang,et al.  Histone methyltransferase SETD2 regulates osteosarcoma cell growth and chemosensitivity by suppressing Wnt/beta-catenin signaling (vol 502, pg 382, 2018) , 2018 .

[76]  W. Kisseberth,et al.  Canine osteosarcoma: a naturally occurring disease to inform pediatric oncology. , 2014, ILAR journal.

[77]  M. Martano,et al.  PDGFs and PDGFRs in canine osteosarcoma: new targets for innovative therapeutic strategies in comparative oncology. , 2013, Veterinary journal.

[78]  Brad T. Sherman,et al.  Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources , 2008, Nature Protocols.

[79]  G. Pfeifer Mutagenesis at methylated CpG sequences. , 2006, Current topics in microbiology and immunology.

[80]  Carl W. Miller,et al.  Alterations of thep53, Rb andMDM2 genes in osteosarcoms , 2005, Journal of Cancer Research and Clinical Oncology.

[81]  A. Johnson,et al.  Mutation of the p53 tumor suppressor gene in spontaneously occurring osteosarcomas of the dog. , 1998, Carcinogenesis.

[82]  S. A. Goedegebuure,et al.  P53 gene mutations in osteosarcomas in the dog. , 1997, Cancer letters.

[83]  H. Koeffler,et al.  Alterations of the p53, Rb and MDM2 genes in osteosarcoma. , 1996, Journal of cancer research and clinical oncology.

[84]  L. Kunkel,et al.  Dystrophin: the protein product of the Duchenne muscular dystrophy locus. , 1987, Cell.