Tiled-grating compression of multiterawatt laser pulses.

High-energy petawatt lasers require large diffraction gratings for pulse compression. As an alternative to meter-sized gratings, we demonstrate the capability of a tiled-grating system to compress multiterawatt subpicosecond laser pulses. Using a 100 TW-class Nd:glass chirped-pulse amplification laser facility, we report on the performance of a two-grating mosaic to compress high-energy pulses to 2.5 J, 450 fs (5.5 TW) in air with a beam size of 50 mm and energy transmission of 63%. Stability of the grating mosaic alignment was realized by use of an accurate nanopositioning optomechanical system. The output Gaussian spectrum was preserved from grating-gap spectral clipping and was free of modulation.