Banded regularization of autocovariance matrices in application to parameter estimation and forecasting of time series

Summary.  The paper addresses a ‘large p–small n’ problem in a time series framework and considers properties of banded regularization of an empirical autocovariance matrix of a time series process. Utilizing the banded autocovariance matrix enables us to fit a much longer auto‐regressive AR(p) model to the observed data than typically suggested by the Akaike information criterion, while controlling how many parameters are to be estimated precisely and the level of accuracy. We present results on asymptotic consistency of banded autocovariance matrices under the Frobenius norm and provide a theoretical justification on optimal band selection by using cross‐validation. Remarkably, the cross‐validation loss function for banded prediction is related to the conditional mean‐square prediction error and, thus, may be viewed as an alternative model selection criterion. The procedure proposed is illustrated by simulations and application to predicting the sea surface temperature index in the Niño 3.4 region.

[1]  G. Yule On the Time‐Correlation Problem, with Especial Reference to the Variate‐Difference Correlation Method , 1921 .

[2]  U. Grenander,et al.  Toeplitz Forms And Their Applications , 1958 .

[3]  P. Heywood Trigonometric Series , 1968, Nature.

[4]  H. Akaike Fitting autoregressive models for prediction , 1969 .

[5]  P. Young,et al.  Time series analysis, forecasting and control , 1972, IEEE Transactions on Automatic Control.

[6]  K. Berk Consistent Autoregressive Spectral Estimates , 1974 .

[7]  E. Parzen Some recent advances in time series modeling , 1974 .

[8]  R. Shibata Asymptotically Efficient Selection of the Order of the Model for Estimating Parameters of a Linear Process , 1980 .

[9]  László Gerencsér,et al.  AR(infty) estimation and nonparametric stochastic complexity , 1992, IEEE Trans. Inf. Theory.

[10]  Anders Lindquist,et al.  A covariance extension approach to identification of time series , 2000, Autom..

[11]  Kevin E. Trenberth,et al.  Indices of El Niño Evolution , 2001 .

[12]  R. Baillie,et al.  Modeling and forecasting from trend-stationary long memory models with applications to climatology , 2002 .

[13]  Ching-Kang Ing,et al.  On same-realization prediction in an infinite-order autoregressive process , 2003 .

[14]  D. Politis Adaptive bandwidth choice , 2003 .

[15]  M. Pourahmadi,et al.  Nonparametric estimation of large covariance matrices of longitudinal data , 2003 .

[16]  P. Bickel,et al.  Some theory for Fisher''s linear discriminant function , 2004 .

[17]  W. Wu,et al.  Nonlinear system theory: another look at dependence. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[18]  Ching-Zong Wei,et al.  Order selection for same-realization predictions in autoregressive processes , 2005, math/0602326.

[19]  C. Ing ACCUMULATED PREDICTION ERRORS, INFORMATION CRITERIA AND OPTIMAL FORECASTING FOR AUTOREGRESSIVE TIME SERIES , 2007, 0708.2373.

[20]  Jianhua Z. Huang,et al.  Covariance matrix selection and estimation via penalised normal likelihood , 2006 .

[21]  Christopher F. Baum,et al.  Long-memory forecasting of US monetary indices , 2006 .

[22]  N. Meinshausen,et al.  High-dimensional graphs and variable selection with the Lasso , 2006, math/0608017.

[23]  S. Geer,et al.  Regularization in statistics , 2006 .

[24]  P. Doukhan,et al.  Weak Dependence: With Examples and Applications , 2007 .

[25]  Donald Poskitt,et al.  Autoregressive approximation in nonstandard situations: the fractionally integrated and non-invertible cases , 2007 .

[26]  A. Barabanov,et al.  Strong consistency of the regularized least-squares estimates of infinite autoregressive models , 2007 .

[27]  T. Bengtsson,et al.  Estimation of high-dimensional prior and posterior covariance matrices in Kalman filter variants , 2007 .

[28]  Noureddine El Karoui,et al.  Operator norm consistent estimation of large-dimensional sparse covariance matrices , 2008, 0901.3220.

[29]  P. Bickel,et al.  Regularized estimation of large covariance matrices , 2008, 0803.1909.

[30]  R. Sachs,et al.  Structural shrinkage of nonparametric spectral estimators for multivariate time series , 2008, 0804.4738.

[31]  M. Pourahmadi,et al.  BANDING SAMPLE AUTOCOVARIANCE MATRICES OF STATIONARY PROCESSES , 2009 .

[32]  Jianqing Fan,et al.  Sparsistency and Rates of Convergence in Large Covariance Matrix Estimation. , 2007, Annals of statistics.

[33]  Adam J. Rothman,et al.  Generalized Thresholding of Large Covariance Matrices , 2009 .

[34]  P. Bickel,et al.  Covariance regularization by thresholding , 2009, 0901.3079.

[35]  Harrison H. Zhou,et al.  Optimal rates of convergence for covariance matrix estimation , 2010, 1010.3866.

[36]  Yulia R. Gel,et al.  Autoregressive frequency detection using Regularized Least Squares , 2010, J. Multivar. Anal..

[37]  D. Politis,et al.  Banded and tapered estimates for autocovariance matrices and the linear process bootstrap , 2010 .

[38]  Y. Nardi,et al.  Autoregressive process modeling via the Lasso procedure , 2008, J. Multivar. Anal..