Towards amperometric immunosensor devices.

In contrast to optical immunosensors, the electrochemical detection of an immunanalytical reaction does require a labeling, but allows an easier discrimination of specific and non-specific binding. We present a concept and first results for a multivalent amperometric immunosensor system which is based on silicon technology. The capture molecule streptavidin, covalently immobilized on silica, allows the immobilization of biotinylated antigens at a defined density. A nanostructured gold electrode serving as a stable network of nanowires is expected to be beneficial for the electrochemical detection of bound ferrocene-labeled antibody molecules. The results presented focus on site-specific immobilization of streptavidin on silica and reduction of non-specific binding of proteins.

[1]  H. M. Widmer,et al.  Fiber-optic Atrazine immunosensor☆ , 1993 .

[2]  Wolfgang Schuhmann,et al.  Electron-transfer pathways in amperometric biosensors. Ferrocene-modified enzymes entrapped in conducting-polymer layers , 1995 .

[3]  L. Tiefenauer,et al.  Antigen- versus antibody-immobilized ELISA procedures based on a biotinyl-estradiol conjugate. , 1989, Journal of steroid biochemistry.

[4]  T. Ngo Electrochemical Sensors in Immunological Analysis , 1987, Springer US.

[5]  M. Aizawa,et al.  Multilabeling of ferrocenes to a glucose oxidase-digoxin conjugate for the development of a homogeneous electroenzymatic immunoassay. , 1994, Analytical chemistry.

[6]  Brian L. Frey,et al.  Control of the Specific Adsorption of Proteins onto Gold Surfaces with Poly(L-lysine) Monolayers , 1995 .

[7]  J M Calvert,et al.  Use of thiol-terminal silanes and heterobifunctional crosslinkers for immobilization of antibodies on silica surfaces. , 1989, Analytical biochemistry.

[8]  Marco Mascini,et al.  Analytical uses of immobilized biological compounds for detection, medical, and industrial uses , 1988 .

[9]  L. Tiefenauer,et al.  Biotinyl-estradiol derivatives in enzyme immunoassays: structural requirements for optimal antibody binding. , 1990, Journal of steroid biochemistry.

[10]  H. J. Griesser,et al.  A general method to recondition and reuse BIAcore sensor chips fouled with covalently immobilized protein/peptide. , 1995, Analytical biochemistry.

[11]  Hans W. Lehmann,et al.  Fabrication and Characterization of Nanostructured Gold Electrodes for Electrochemical Biosensors , 1996 .

[12]  F. Armstrong,et al.  Direct electrochemistry of redox proteins , 1988 .

[13]  H. Hill,et al.  Homogeneous ferrocene-mediated amperometric immunoassay. , 1986, Analytical chemistry.

[14]  Rajinder S. Sethi,et al.  Transducer aspects of biosensors , 1991 .

[15]  C. Lowe,et al.  Immobilization of glucose oxidase in ferrocene-modified pyrrole polymers. , 1988, Analytical chemistry.

[16]  A. Heller,et al.  L-alpha-glycerophosphate and L-lactate electrodes based on the electrochemical "wiring" of oxidases. , 1992, Analytical chemistry.

[17]  J. Rishpon,et al.  The development of an immunosensor for the electrochemical determination of the isoenzyme LDH5. , 1989, Biosensors.

[18]  R. Luginbühl,et al.  Immunosensing with photo-immobilized immunoreagents on planar optical wave guides. , 1995, Biosensors & bioelectronics.

[19]  Adam Heller,et al.  Electrical Wiring of Redox Enzymes , 1990 .

[20]  H. Hill,et al.  Binding as a Prerequisite for Rapid Electron Transfer Reactions of Metalloproteins , 1982 .

[21]  M. Grätzel,et al.  Long-term stability and improved reusability of a piezoelectric immunosensor for human erythrocytes , 1993 .

[22]  J. J. Kalys Enzyme electrodes based on organic metals , 1986 .

[23]  I. Willner,et al.  APPLICATION OF PHOTOISOMERIZABLE ANTIGENIC MONOLAYER ELECTRODES AS REVERSIBLE AMPEROMETRIC IMMUNOSENSORS , 1994 .

[24]  Marco Mascini,et al.  Uses of immobilized biological compounds , 1993 .

[25]  L. Tiefenauer,et al.  Covalent immobilization of avidin on glassy carbon electrodes as the basis for multivalent biosensors. , 1992, Biosensors & bioelectronics.

[26]  Christopher R. Lowe,et al.  Enzyme entrapment in electrically conducting polymers. Immobilisation of glucose oxidase in polypyrrole and its application in amperometric glucose sensors , 1986 .

[27]  L. Jiang,et al.  Elektrochemische Kupplung von Komponenten der biologischen Elektronentransportkette an modifizierte Oberflächen: molekulare Erkennung zwischen Cytochrom‐c‐Peroxidase und Cytochrom c , 1995 .

[28]  H. Hill,et al.  Direct and indirect electron transfer between electrodes and redox proteins. , 1988, European journal of biochemistry.

[29]  M. Smyth,et al.  Development of an antibody-based amperometric biosensor to study the reaction of 7-hydroxycoumarin with its specific antibody. , 1993, The Analyst.

[30]  M. Döbeli,et al.  Nanostructuring of gold electrodes for immunosensing applications , 1995 .

[31]  Christine Kranz,et al.  Conducting polymer-based amperometric enzyme electrodes. Towards the development of miniaturized reagentless biosensors , 1993 .

[32]  M. Meyerhoff,et al.  Separation-free sandwich enzyme immunoassays using microporous gold electrodes and self-assembled monolayer/immobilized capture antibodies. , 1994, Analytical chemistry.

[33]  H. Tien,et al.  ELECTROCHEMICAL TRANSDUCTION OF AN IMMUNOLOGICAL REACTION VIA S-BLMS , 1995 .

[34]  W. Schuhmann,et al.  Direct electrocatalytical H2O2 reduction with hemin covalently immobilized at a monolayer-modified gold electrode , 1995 .

[36]  W. Heineman,et al.  Small-volume voltammetric detection of 4-aminophenol with interdigitated array electrodes and its application to electrochemical enzyme immunoassay. , 1993, Analytical chemistry.

[37]  V. Razumas,et al.  ELECTROCATALYTIC REDUCTION OF HYDROGEN PEROXIDE ON THE MICROPEROXIDASE-11 MODIFIED CARBON PASTE AND GRAPHITE ELECTRODES , 1996 .

[38]  A. Manz,et al.  A silicon flow cell for optical detection in miniaturized total chemical analysis systems , 1992 .

[39]  Adam Heller,et al.  Electron Transfer between Glucose Oxidase and Electrodes via Redox Mediators Bound with Flexible Chains to the Enzyme Surface , 1991 .

[40]  A. Malmborg,et al.  BIAcore as a tool in antibody engineering. , 1995, Journal of immunological methods.

[41]  W. Müller,et al.  Spezifische Bindung einer funktionellen Proteinschicht an eine trägerfixierte Streptavidinmatrix , 1992 .

[42]  F. Bier,et al.  Integrated optical immunosensor for s-triazine determination: regeneration, calibration and limitations , 1994 .

[43]  S. Ohlson Affinity Chromatography and Biological Recognition , 1983 .

[44]  B. Liedberg,et al.  Biosensing with surface plasmon resonance--how it all started. , 1995, Biosensors & bioelectronics.

[45]  P. Hale,et al.  Amperometric glucose biosensors based on redox polymer-mediated electron transfer , 1991 .