Flexible parylene-thread bioprobe and the sewing method for in vivo neuronal recordings

[1]  Makoto Ishida,et al.  Ultrastretchable Kirigami Bioprobes , 2018, Advanced healthcare materials.

[2]  J. J. Siegel,et al.  Ultraflexible nanoelectronic probes form reliable, glial scar–free neural integration , 2017, Science Advances.

[3]  K. Koida,et al.  Single 5 μm diameter needle electrode block modules for unit recordings in vivo , 2016, Scientific Reports.

[4]  Marie-Charline Blatché,et al.  Silk and PEG as means to stiffen a parylene probe for insertion in the brain: toward a double time-scale tool for local drug delivery , 2015 .

[5]  Makoto Ishida,et al.  Flexible parylene-film optical waveguide arrays , 2015 .

[6]  Zhigang Suo,et al.  Syringe-injectable electronics. , 2015, Nature nanotechnology.

[7]  Jae-Woong Jeong,et al.  Soft Materials in Neuroengineering for Hard Problems in Neuroscience , 2015, Neuron.

[8]  M. Ishida,et al.  In vivo neuronal action potential recordings via three-dimensional microscale needle-electrode arrays , 2014, Scientific Reports.

[9]  David L. Kaplan,et al.  Silk as a Multifunctional Biomaterial Substrate for Reduced Glial Scarring around Brain‐Penetrating Electrodes , 2013 .

[10]  Yei Hwan Jung,et al.  Injectable, Cellular-Scale Optoelectronics with Applications for Wireless Optogenetics , 2013, Science.

[11]  T. Kawano,et al.  Self-curling and -sticking flexible substrate for ECoG electrode array , 2013, 2013 IEEE 26th International Conference on Micro Electro Mechanical Systems (MEMS).

[12]  Vanessa M. Tolosa,et al.  Removable silicon insertion stiffeners for neural probes using polyethylene glycol as a biodissolvable adhesive , 2012, 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[13]  Makoto Ishida,et al.  Enlarged gold-tipped silicon microprobe arrays and signal compensation for multi-site electroretinogram recordings in the isolated carp retina. , 2011, Biosensors & bioelectronics.

[14]  Daryl R. Kipke,et al.  Flavopiridol reduces the impedance of neural prostheses in vivo without affecting recording quality , 2009, Journal of Neuroscience Methods.

[15]  R. Bellamkonda,et al.  Biomaterials for the central nervous system , 2008, Journal of The Royal Society Interface.

[16]  D. Kipke,et al.  Neural probe design for reduced tissue encapsulation in CNS. , 2007, Biomaterials.

[17]  P. Tresco,et al.  Response of brain tissue to chronically implanted neural electrodes , 2005, Journal of Neuroscience Methods.

[18]  David C. Martin,et al.  Neuronal cell loss accompanies the brain tissue response to chronically implanted silicon microelectrode arrays , 2005, Experimental Neurology.

[19]  Justin C. Williams,et al.  Chronic neural recording using silicon-substrate microelectrode arrays implanted in cerebral cortex , 2004, IEEE Transactions on Biomedical Engineering.

[20]  D. Szarowski,et al.  Brain responses to micro-machined silicon devices , 2003, Brain Research.

[21]  H. Oka,et al.  A new planar multielectrode array for extracellular recording: application to hippocampal acute slice , 1999, Journal of Neuroscience Methods.

[22]  D. Edell,et al.  Factors influencing the biocompatibility of insertable silicon microshafts in cerebral cortex , 1992, IEEE Transactions on Biomedical Engineering.

[23]  G. Clowry,et al.  Newcastle University Eprints Date Deposited: 23 the Sinusoidal Probe: a New Approach to Improve Electrode Longevity , 2022 .