KDV limit of the hydromagnetic waves in cold plasma

In this paper, we study the long wavelength limit for the hydromagnetic waves propagating across a magnetic field in cold plasma. Based on the Gardner–Morikawa transform and the reductive perturbation method, it is demonstrated that as $$\varepsilon \rightarrow 0$$ε→0, the solutions of such hydromagnetic waves converge to the solution of the Korteweg–de Vries equation on an $$O(\varepsilon ^{-3/2})$$O(ε-3/2) time interval.

[1]  E. Grenier Pseudo-differential energy estimates of singular perturbations , 1997 .

[2]  Walter Craig,et al.  An existence theory for water waves and the boussinesq and korteweg-devries scaling limits , 1985 .

[3]  Hiroaki Ono,et al.  Reductive Perturbation Method in Nonlinear Wave Propagation. I , 1968 .

[4]  Xueke Pu,et al.  Dispersive Limit of the Euler-Poisson System in Higher Dimensions , 2012, SIAM J. Math. Anal..

[5]  Giovanni Manfredi,et al.  Quantum ion-acoustic waves , 2003 .

[6]  A. Majda,et al.  Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit , 1981 .

[7]  Tosio Kato,et al.  Commutator estimates and the euler and navier‐stokes equations , 1988 .

[8]  Daniel Han-Kwan From Vlasov–Poisson to Korteweg–de Vries and Zakharov–Kuznetsov , 2012, 1209.3212.

[9]  Yan Guo,et al.  KdV Limit of the Euler–Poisson System , 2012, 1202.1830.

[10]  C. S. Gardner,et al.  Korteweg‐de Vries Equation and Generalizations. III. Derivation of the Korteweg‐de Vries Equation and Burgers Equation , 1969 .

[11]  Luis Vega,et al.  Well-posedness of the initial value problem for the Korteweg-de Vries equation , 1991 .

[12]  Shu Wang,et al.  Quasineutral limit for the compressible quantum Navier–Stokes–Maxwell equations , 2018 .

[13]  C. S. Gardner,et al.  Similarity in the Asymptotic Behavior of Collision-Free Hydromagnetic Waves and Water Waves , 2011 .

[14]  H. Washimi,et al.  ON THE PROPAGATION OF ION ACOUSTIC SOLITARY WAVES OF SMALL AMPLITUDE. , 1966 .

[15]  C. Kenig,et al.  Well‐posedness and scattering results for the generalized korteweg‐de vries equation via the contraction principle , 1993 .

[16]  Guido Schneider,et al.  The long‐wave limit for the water wave problem I. The case of zero surface tension , 2000 .

[17]  Huimin Liu,et al.  Long Wavelength Limit for the Quantum Euler-Poisson Equation , 2015, SIAM J. Math. Anal..

[18]  R. Miura The Korteweg–deVries Equation: A Survey of Results , 1976 .

[19]  T. Taniuti,et al.  Reductive Perturbation Method in Nonlinear Wave Propagation. I , 1968 .