Calibrating dynamic pedestrian route choice with an Extended Range Telepresence System

In this contribution we present the results of a pilot study in which an Extended Range Telepresence System is used to calibrate parameters of a pedestrian model for simulation. The parameters control a model element that is intended to make simulated agents walk in the direction of the estimated smallest remaining travel time. We use this to, first, show that that an Extended Range Telepresence System can serve for such a task in general and second to actually find simulation parameters that yield realistic results.

[1]  H. W. Hamacher,et al.  Quickest Cluster Flow Problems , 2011 .

[2]  C. Rogsch,et al.  Basics of Software-Tools for Pedestrian Movement—Identification and Results , 2012 .

[3]  Dirk Helbing,et al.  Pedestrian, Crowd and Evacuation Dynamics , 2013, Encyclopedia of Complexity and Systems Science.

[4]  W. Jeong UUCS-07-010 A Fast Iterative Method for a Class of Hamilton-Jacobi Equations on Parallel Systems , 2007 .

[5]  Ekaterina Kirik,et al.  The shortest time and/or the shortest path strategies in a CA FF pedestrian dynamics model , 2009, 0906.4265.

[6]  R. Hughes The flow of human crowds , 2003 .

[7]  Peter Vortisch,et al.  Pedestrian Flow at Bottlenecks - Validation and Calibration of Vissim's Social Force Model of Pedestrian Traffic and its Empirical Foundations , 2008, ArXiv.

[8]  Michael Schreckenberg,et al.  Pedestrian and evacuation dynamics , 2002 .

[9]  D. Wolf,et al.  Traffic and Granular Flow , 1996 .

[10]  Dirk Helbing,et al.  Specification of the Social Force Pedestrian Model by Evolutionary Adjustment to Video Tracking Data , 2007, Adv. Complex Syst..

[11]  Dinesh Manocha,et al.  PLEdestrians: a least-effort approach to crowd simulation , 2010, SCA '10.

[12]  Hiroo Iwata,et al.  Walking about virtual environments on an infinite floor , 1999, Proceedings IEEE Virtual Reality (Cat. No. 99CB36316).

[13]  André Borrmann,et al.  Graph-based approaches for simulating pedestrian dynamics in building models , 2010 .

[14]  Edward Courtney,et al.  2 = 4 M , 1993 .

[15]  Robert A. Meyers,et al.  Encyclopedia of Complexity and Systems Science , 2009 .

[16]  J William,et al.  IEEE Computer Graphics and Applications , 2019, Computer.

[17]  Uwe D. Hanebeck,et al.  A Framework for Evaluating the VISSIM Traffic Simulation with Extended Range Telepresence , 2009 .

[18]  Tobias Kretz,et al.  The use of dynamic distance potential fields for pedestrian flow around corners , 2009, ArXiv.

[19]  Jeremy Shopf,et al.  GPU Crowd Simulation , 2008 .

[20]  Ross T. Whitaker,et al.  A Fast Iterative Method for Eikonal Equations , 2008, SIAM J. Sci. Comput..

[21]  Heinz Ulbrich,et al.  A 2D-Motion Platform: The Cybercarpet , 2007, Second Joint EuroHaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems (WHC'07).

[22]  Kai Nagel,et al.  Large Scale Microscopic Evacuation Simulation , 2010 .

[23]  Martin Skutella,et al.  On the use of network flow techniques for assigning evacuees to exits , 2010 .

[24]  Tobias Kretz,et al.  Pedestrian traffic: on the quickest path , 2009, ArXiv.

[25]  Hiroo Iwata,et al.  CirculaFloor , 2005, IEEE Computer Graphics and Applications.

[26]  Adrien Treuille,et al.  Continuum crowds , 2006, SIGGRAPH 2006.

[27]  Erica D. Kuligowski,et al.  Pedestrian and Evacuation Dynamics , 2011 .

[28]  Ross T. Whitaker A FAST EIKONAL EQUATION SOLVER FOR PARALLEL SYSTEMS , 2007 .

[29]  A. Seyfried,et al.  Modeling of pedestrian movement around 90 and 180 degree bends , 2009 .

[30]  Ekaterina Kirik,et al.  ON REALIZING THE SHORTEST TIME STRATEGY IN A CA FF PEDESTRIAN DYNAMICS MODEL , 2011, Cybern. Syst..

[31]  Peter Vortisch,et al.  Microscopic Traffic Flow Simulator VISSIM , 2010 .

[32]  Stefan Holl,et al.  Modeling the Dynamic Route Choice of Pedestrians to Assess the Criticality of Building Evacuation , 2011, Adv. Complex Syst..

[33]  Helbing,et al.  Social force model for pedestrian dynamics. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[34]  Uwe D. Hanebeck,et al.  Feedback Controlled Motion Compression for Extended Range Telepresence , 2004 .

[35]  Roland Brockers,et al.  Comprehensive data acquisition for a telepresence application , 2004, 2004 IEEE International Conference on Systems, Man and Cybernetics (IEEE Cat. No.04CH37583).

[36]  Armin Seyfried,et al.  Evacuation Assistance for a Sports Arena Using a Macroscopic Network Model , 2011 .

[37]  Dirk Helbing,et al.  How simple rules determine pedestrian behavior and crowd disasters , 2011, Proceedings of the National Academy of Sciences.

[38]  Tobias Kretz,et al.  An Example of Complex Pedestrian Route Choice , 2011 .

[39]  Uwe D. Hanebeck,et al.  Motion Compression for Telepresent Walking in Large Target Environments , 2004, Presence: Teleoperators & Virtual Environments.

[40]  Terry Allard,et al.  Spatial Orientation and Wayfinding in Large-Scale Virtual Spaces: An Introduction , 1998, Presence.

[41]  Paolo Fiorini,et al.  Motion Planning in Dynamic Environments Using Velocity Obstacles , 1998, Int. J. Robotics Res..

[42]  Roger L. Hughes,et al.  A continuum theory for the flow of pedestrians , 2002 .

[43]  Tobias Kretz,et al.  The Dynamic Distance Potential Field in a Situation with Asymmetric Bottleneck Capacities , 2010, ACRI.

[44]  J A Sethian,et al.  Computing geodesic paths on manifolds. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[45]  Tobias Kretz,et al.  Applications of the Dynamic Distance Potential Field Method , 2009, ArXiv.

[46]  D. Wolf,et al.  Traffic and Granular Flow ’03 , 2005 .

[47]  Peter Vortisch,et al.  Quickest Paths in Simulations of Pedestrians , 2011, Adv. Complex Syst..

[48]  Hubert Klüpfel,et al.  Evacuation Dynamics: Empirical Results, Modeling and Applications , 2009, Encyclopedia of Complexity and Systems Science.

[49]  Jungwon Yoon,et al.  Walking control of a dual-planar parallel robot for omni-directional locomotion interface , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[50]  Serge P. Hoogendoorn,et al.  Pedestrian route-choice and activity scheduling theory and models , 2004 .