Riemannian Manifold Hamiltonian Monte Carlo
暂无分享,去创建一个
[1] Hoon Kim,et al. Monte Carlo Statistical Methods , 2000, Technometrics.
[2] Christian P. Robert,et al. Monte Carlo Statistical Methods , 2005, Springer Texts in Statistics.
[3] Neil D. Lawrence,et al. Accelerating Bayesian Inference over Nonlinear Differential Equations with Gaussian Processes , 2008, NIPS.
[4] C. R. Rao,et al. Information and the Accuracy Attainable in the Estimation of Statistical Parameters , 1992 .
[5] W. K. Hastings,et al. Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .
[6] I. Chavel. Riemannian Geometry: Subject Index , 2006 .
[7] Francis Sullivan,et al. The Metropolis Algorithm , 2000, Computing in Science & Engineering.
[8] David B. Dunson,et al. Bayesian Data Analysis , 2010 .
[9] Radford M. Neal. Bayesian Learning via Stochastic Dynamics , 1992, NIPS.
[10] David J. Spiegelhalter,et al. Machine Learning, Neural and Statistical Classification , 2009 .
[11] P. Ferreira,et al. Extending Fisher's measure of information , 1981 .
[12] Radford M. Neal. Probabilistic Inference Using Markov Chain Monte Carlo Methods , 2011 .
[13] Carl E. Rasmussen,et al. Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.
[14] P Gustafson,et al. Large hierarchical Bayesian analysis of multivariate survival data. , 1997, Biometrics.
[15] J. Rosenthal,et al. Scaling limits for the transient phase of local Metropolis–Hastings algorithms , 2005 .
[16] Shun-ichi Amari,et al. Differential-geometrical methods in statistics , 1985 .
[17] Yoshua Bengio,et al. Pattern Recognition and Neural Networks , 1995 .
[18] H. Ishwaran. Applications of Hybrid Monte Carlo to Bayesian Generalized Linear Models: Quasicomplete Separation and Neural Networks , 1999 .
[19] J. Rosenthal,et al. Optimal scaling of discrete approximations to Langevin diffusions , 1998 .
[20] C. Holmes,et al. Bayesian auxiliary variable models for binary and multinomial regression , 2006 .
[21] Christophe Andrieu,et al. A tutorial on adaptive MCMC , 2008, Stat. Comput..
[22] Charles J. Geyer,et al. Practical Markov Chain Monte Carlo , 1992 .
[23] Jiguo Cao,et al. Parameter estimation for differential equations: a generalized smoothing approach , 2007 .
[24] E. Hairer,et al. Geometric Numerical Integration , 2022, Oberwolfach Reports.
[25] Robert K. Tsutakawa,et al. Design of Experiment for Bioassay , 1972 .
[26] G. Roberts,et al. Langevin Diffusions and Metropolis-Hastings Algorithms , 2002 .
[27] Amir Hajian,et al. Efficient cosmological parameter estimation with Hamiltonian Monte Carlo technique , 2007 .
[28] Tim Hesterberg,et al. Monte Carlo Strategies in Scientific Computing , 2002, Technometrics.
[29] N. Metropolis,et al. Equation of State Calculations by Fast Computing Machines , 1953, Resonance.
[30] Shun-ichi Amari,et al. Natural Gradient Works Efficiently in Learning , 1998, Neural Computation.
[31] Yoram Baram,et al. Manifold Stochastic Dynamics for Bayesian Learning , 1999, Neural Computation.
[32] Peter Green,et al. Markov chain Monte Carlo in Practice , 1996 .
[33] Jim Albert,et al. Ordinal Data Modeling , 2000 .
[34] Ernst Hairer,et al. Simulating Hamiltonian dynamics , 2006, Math. Comput..
[35] R. Kass. The Geometry of Asymptotic Inference , 1989 .
[36] M. Schervish. Theory of Statistics , 1995 .
[37] Paul H. C. Eilers,et al. Bayesian density estimation from grouped continuous data , 2009, Comput. Stat. Data Anal..