Pathological hydrogen peroxide triggers the fibrillization of wild-type SOD1 via sulfenic acid modification of Cys-111

[1]  I. Evdokimidis,et al.  Cerebrospinal Fluid TAR DNA-Binding Protein 43 Combined with Tau Proteins as a Candidate Biomarker for Amyotrophic Lateral Sclerosis and Frontotemporal Dementia Spectrum Disorders , 2017, Dementia and Geriatric Cognitive Disorders.

[2]  E. L. Guenther,et al.  Atomic structure of a toxic, oligomeric segment of SOD1 linked to amyotrophic lateral sclerosis (ALS) , 2017, Proceedings of the National Academy of Sciences.

[3]  Timothy A. Miller,et al.  Phosphorylated neurofilament heavy chain: A biomarker of survival for C9ORF72‐associated amyotrophic lateral sclerosis , 2017, Annals of neurology.

[4]  S. Ajroud‐Driss,et al.  Pyrimethamine significantly lowers cerebrospinal fluid Cu/Zn superoxide dismutase in amyotrophic lateral sclerosis patients with SOD1 mutations , 2017, Annals of neurology.

[5]  Tao Xu,et al.  Temporal Transcriptomic and Proteomic Landscapes of Deteriorating Pancreatic Islets in Type 2 Diabetic Rats , 2017, Diabetes.

[6]  A. Cagnin,et al.  Diagnostic and Prognostic Biomarkers in Amyotrophic Lateral Sclerosis: Neurofilament Light Chain Levels in Definite Subtypes of Disease , 2017, JAMA neurology.

[7]  D. Pizzo,et al.  Misfolded SOD1 is not a primary component of sporadic ALS , 2017, Acta Neuropathologica.

[8]  Jie Chen,et al.  Pathological concentration of zinc dramatically accelerates abnormal aggregation of full-length human Tau and thereby significantly increases Tau toxicity in neuronal cells. , 2017, Biochimica et biophysica acta. Molecular basis of disease.

[9]  M. Carrì,et al.  Cysteine Modifications in the Pathogenesis of ALS , 2017, Front. Mol. Neurosci..

[10]  A. Carrier,et al.  Neuroglobin protects astroglial cells from hydrogen peroxide‐induced oxidative stress and apoptotic cell death , 2017, Journal of neurochemistry.

[11]  A. Holmgren,et al.  Cellular Redox Systems Impact the Aggregation of Cu,Zn Superoxide Dismutase Linked to Familial Amyotrophic Lateral Sclerosis* , 2016, The Journal of Biological Chemistry.

[12]  A. Messina,et al.  Overexpression of human SOD1 in VDAC1-less yeast restores mitochondrial functionality modulating beta-barrel outer membrane protein genes. , 2016, Biochimica et biophysica acta.

[13]  Robert H. Brown,et al.  CCNF mutations in amyotrophic lateral sclerosis and frontotemporal dementia , 2016, Nature Communications.

[14]  N. Cashman,et al.  TDP-43 or FUS-induced misfolded human wild-type SOD1 can propagate intercellularly in a prion-like fashion , 2016, Scientific Reports.

[15]  M. Hasegawa,et al.  Templated Aggregation of TAR DNA-binding Protein of 43 kDa (TDP-43) by Seeding with TDP-43 Peptide Fibrils* , 2016, The Journal of Biological Chemistry.

[16]  Elise M. Stewart,et al.  SOD1 protein aggregates stimulate macropinocytosis in neurons to facilitate their propagation , 2015, Molecular Neurodegeneration.

[17]  J. Valentine,et al.  The Disulfide Bond, but Not Zinc or Dimerization, Controls Initiation and Seeded Growth in Amyotrophic Lateral Sclerosis-linked Cu,Zn Superoxide Dismutase (SOD1) Fibrillation* , 2015, The Journal of Biological Chemistry.

[18]  T. Conrads,et al.  Label-Free LC-MS/MS Proteomic Analysis of Cerebrospinal Fluid Identifies Protein/Pathway Alterations and Candidate Biomarkers for Amyotrophic Lateral Sclerosis. , 2015, Journal of proteome research.

[19]  Sean J. Miller,et al.  The C9orf72 repeat expansion disrupts nucleocytoplasmic transport , 2015, Nature.

[20]  D. Pang,et al.  Sequence-dependent abnormal aggregation of human Tau fragment in an inducible cell model. , 2015, Biochimica et biophysica acta.

[21]  J. Danielsson,et al.  SOD1 aggregation in ALS mice shows simplistic test tube behavior , 2015, Proceedings of the National Academy of Sciences.

[22]  Huilin Zhou,et al.  Macrophage Migration Inhibitory Factor as a Chaperone Inhibiting Accumulation of Misfolded SOD1 , 2015, Neuron.

[23]  Yoko Takahashi,et al.  A cysteine residue affects the conformational state and neuronal toxicity of mutant SOD1 in mice: relevance to the pathogenesis of ALS. , 2015, Human molecular genetics.

[24]  J. Trojanowski,et al.  An acetylation switch controls TDP-43 function and aggregation propensity , 2015, Nature Communications.

[25]  J. Alegre-Cebollada,et al.  Altered Thiol Chemistry in Human Amyotrophic Lateral Sclerosis-linked Mutants of Superoxide Dismutase 1* , 2014, The Journal of Biological Chemistry.

[26]  A. Hill,et al.  Intercellular propagated misfolding of wild-type Cu/Zn superoxide dismutase occurs via exosome-dependent and -independent mechanisms , 2014, Proceedings of the National Academy of Sciences.

[27]  E. L. Guenther,et al.  Aggregation-triggering segments of SOD1 fibril formation support a common pathway for familial and sporadic ALS , 2013, Proceedings of the National Academy of Sciences.

[28]  D. A. Bosco,et al.  An emerging role for misfolded wild-type SOD1 in sporadic ALS pathogenesis , 2013, Front. Cell. Neurosci..

[29]  D. Mann,et al.  Prion-like properties of pathological TDP-43 aggregates from diseased brains. , 2013, Cell reports.

[30]  D. Borchelt,et al.  Structural similarity of wild-type and ALS-mutant superoxide dismutase-1 fibrils using limited proteolysis and atomic force microscopy , 2013, Proceedings of the National Academy of Sciences.

[31]  D. Pang,et al.  Cupric Ions Induce the Oxidation and Trigger the Aggregation of Human Superoxide Dismutase 1 , 2013, PloS one.

[32]  Jian Zhao,et al.  Structural Transformation of the Amyloidogenic Core Region of TDP-43 Protein Initiates Its Aggregation and Cytoplasmic Inclusion* , 2013, The Journal of Biological Chemistry.

[33]  Timothy A. Miller,et al.  SOD1 in cerebral spinal fluid as a pharmacodynamic marker for antisense oligonucleotide therapy. , 2013, JAMA neurology.

[34]  V. Mulligan,et al.  Early steps in oxidation-induced SOD1 misfolding: implications for non-amyloid protein aggregation in familial ALS. , 2012, Journal of molecular biology.

[35]  Jie Chen,et al.  Fibril-Forming Motifs Are Essential and Sufficient for the Fibrillization of Human Tau , 2012, PloS one.

[36]  I. Mackenzie,et al.  Aberrant Localization of FUS and TDP43 Is Associated with Misfolding of SOD1 in Amyotrophic Lateral Sclerosis , 2012, PloS one.

[37]  D. A. Bosco,et al.  An over-oxidized form of superoxide dismutase found in sporadic amyotrophic lateral sclerosis with bulbar onset shares a toxic mechanism with mutant SOD1 , 2012, Proceedings of the National Academy of Sciences.

[38]  J. Trojanowski,et al.  Redox signalling directly regulates TDP‐43 via cysteine oxidation and disulphide cross‐linking , 2012, The EMBO journal.

[39]  T. Gao,et al.  Oxidative Modification of Cysteine 111 Promotes Disulfide Bond-Independent Aggregation of SOD1 , 2012, Neurochemical Research.

[40]  D. Cleveland,et al.  The Seeds of Neurodegeneration: Prion-like Spreading in ALS , 2011, Cell.

[41]  David S Wishart,et al.  Intermolecular transmission of superoxide dismutase 1 misfolding in living cells , 2011, Proceedings of the National Academy of Sciences.

[42]  S. Radford,et al.  A diversity of assembly mechanisms of a generic amyloid fold. , 2011, Molecular cell.

[43]  Chen Wang,et al.  An ALS-associated mutation affecting TDP-43 enhances protein aggregation, fibril formation and neurotoxicity , 2011, Nature Structural &Molecular Biology.

[44]  I. Ferrer,et al.  Cell stress induces TDP-43 pathological changes associated with ERK1/2 dysfunction: implications in ALS , 2011, Acta Neuropathologica.

[45]  P. Andersen,et al.  Misfolded superoxide dismutase‐1 in CSF from amyotrophic lateral sclerosis patients , 2011, Journal of neurochemistry.

[46]  Christian Münch,et al.  Prion-like propagation of mutant superoxide dismutase-1 misfolding in neuronal cells , 2011, Proceedings of the National Academy of Sciences.

[47]  E. Maser,et al.  Cytotoxic potency of H2O2 in cell cultures: impact of cell concentration and exposure time. , 2010, Free radical biology & medicine.

[48]  Jeffery N Agar,et al.  Wild-type and mutant SOD1 share an aberrant conformation and a common pathogenic pathway in ALS , 2010, Nature Neuroscience.

[49]  M. Piccinini,et al.  TDP‐43 Redistribution is an Early Event in Sporadic Amyotrophic Lateral Sclerosis , 2010, Brain pathology.

[50]  A. Minton,et al.  Quantitative Characterization of Heparin Binding to Tau Protein , 2009, The Journal of Biological Chemistry.

[51]  Jun Fan,et al.  Low Micromolar Zinc Accelerates the Fibrillization of Human Tau via Bridging of Cys-291 and Cys-322* , 2009, The Journal of Biological Chemistry.

[52]  Zhengguo Zhou,et al.  Crowded Cell-like Environment Accelerates the Nucleation Step of Amyloidogenic Protein Misfolding* , 2009, The Journal of Biological Chemistry.

[53]  Julian P. Whitelegge,et al.  Initiation and elongation in fibrillation of ALS-linked superoxide dismutase , 2008, Proceedings of the National Academy of Sciences.

[54]  T. O’Halloran,et al.  Complete Loss of Post-translational Modifications Triggers Fibrillar Aggregation of SOD1 in the Familial Form of Amyotrophic Lateral Sclerosis* , 2008, Journal of Biological Chemistry.

[55]  D. Shaw,et al.  Superoxide dismutase 1 (SOD1) is essential for H2O2-mediated oxidation and inactivation of phosphatases in growth factor signaling , 2008, Proceedings of the National Academy of Sciences.

[56]  M. Cozzolino,et al.  Cysteine 111 Affects Aggregation and Cytotoxicity of Mutant Cu,Zn-superoxide Dismutase Associated with Familial Amyotrophic Lateral Sclerosis* , 2008, Journal of Biological Chemistry.

[57]  Keiichiro Suzuki,et al.  Oxidative Modification to Cysteine Sulfonic Acid of Cys111 in Human Copper-Zinc Superoxide Dismutase* , 2007, Journal of Biological Chemistry.

[58]  J. Julien,et al.  Wild‐type superoxide dismutase acquires binding and toxic properties of ALS‐linked mutant forms through oxidation , 2007, Journal of neurochemistry.

[59]  A. Chakrabartty,et al.  An immunological epitope selective for pathological monomer-misfolded SOD1 in ALS , 2007, Nature Medicine.

[60]  E. Kondrashkina,et al.  Mapping the folding free energy surface for metal-free human Cu,Zn superoxide dismutase. , 2006, Journal of molecular biology.

[61]  Carlo Riccardi,et al.  Analysis of apoptosis by propidium iodide staining and flow cytometry , 2006, Nature Protocols.

[62]  T. O’Halloran,et al.  Posttranslational modifications in Cu,Zn-superoxide dismutase and mutations associated with amyotrophic lateral sclerosis. , 2006, Antioxidants & redox signaling.

[63]  A. Chakrabartty,et al.  Oxidation-induced Misfolding and Aggregation of Superoxide Dismutase and Its Implications for Amyotrophic Lateral Sclerosis* , 2002, The Journal of Biological Chemistry.

[64]  R. Weindruch,et al.  Oxidative Stress, Caloric Restriction, and Aging , 1996, Science.

[65]  C Haanen,et al.  A novel assay for apoptosis. Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled Annexin V. , 1995, Journal of immunological methods.

[66]  J. Tainer,et al.  Atomic structures of wild-type and thermostable mutant recombinant human Cu,Zn superoxide dismutase. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[67]  Jacob I. Ayers,et al.  Prion-like propagation of mutant SOD1 misfolding and motor neuron disease spread along neuroanatomical pathways , 2015, Acta Neuropathologica.

[68]  John L. Robinson,et al.  TDP-43 skeins show properties of amyloid in a subset of ALS cases , 2012, Acta Neuropathologica.

[69]  D. Mann,et al.  Increased TDP-43 protein in cerebrospinal fluid of patients with amyotrophic lateral sclerosis , 2008, Acta Neuropathologica.

[70]  I. Fridovich,et al.  Superoxide radical and superoxide dismutases. , 1995, Annual review of biochemistry.