Computational Methods for Minimum Spanning Tree Algorithms

The well-known algorithms of Kruskal, Prim, and Sollin for constructing a minimum spanning tree are surveyed in this paper. We discuss various data structures that can facilitate the search and update operations of these algorithms. In particular, certain novel data structures for carrying out the Kruskal and Prim algorithms are presented. Computational experience using four implementations of the Kruskal algorithm and two implementations of the Prim algorithm on a class of moderately large networks is also given. Overall, the best performance is attained by our new implementation of Prim's algorithm which incorporates an address calculation sort.

[1]  Jouko J. Seppänen Algorithm 399: Spanning tree , 1970, CACM.

[2]  Donald B. Johnson,et al.  Priority Queues with Update and Finding Minimum Spanning Trees , 1975, Inf. Process. Lett..

[3]  T. C. Hu Letter to the Editor---The Maximum Capacity Route Problem , 1961 .

[4]  Robert Kalaba GRAPH THEORY AND AUTOMATIC CONTROL , 1963 .

[5]  J. H. Warren,et al.  Improved algorithm for the construction of minimal spanning trees , 1972 .

[6]  Edsger W. Dijkstra,et al.  A note on two problems in connexion with graphs , 1959, Numerische Mathematik.

[7]  Jon Louis Bentley,et al.  Fast Algorithms for Constructing Minimal Spanning Trees in Coordinate Spaces , 1978, IEEE Transactions on Computers.

[8]  F. Stillinger Physical Clusters, Surface Tension, and Critical Phenomena , 1967 .

[9]  Ellis L. Johnson On shortest paths and sorting , 1972, ACM Annual Conference.

[10]  J. Kruskal On the shortest spanning subtree of a graph and the traveling salesman problem , 1956 .

[11]  Andrew Chi-Chih Yao,et al.  An O(|E| log log |V|) Algorithm for Finding Minimum Spanning Trees , 1975, Inf. Process. Lett..

[12]  S. Vajda,et al.  Integer Programming and Network Flows , 1970 .

[13]  Richard M. Karp,et al.  The traveling-salesman problem and minimum spanning trees: Part II , 1971, Math. Program..

[14]  Harold N. Gabow,et al.  Two Algorithms for Generating Weighted Spanning Trees in Order , 1977, SIAM J. Comput..

[15]  Arnold Weinberger,et al.  Formal Procedures for Connecting Terminals with a Minimum Total Wire Length , 1957, JACM.

[16]  Nicos Christofides,et al.  Graph theory: An algorithmic approach (Computer science and applied mathematics) , 1975 .

[17]  Richard M. Karp,et al.  The Traveling-Salesman Problem and Minimum Spanning Trees , 1970, Oper. Res..

[18]  Vinod Chachra,et al.  Applications of graph theory algorithms , 1979 .

[19]  C T Zahn Using the Minimum Spanning Tree to recognize dotted and dashed curves , 1973 .

[20]  J. Gower,et al.  Minimum Spanning Trees and Single Linkage Cluster Analysis , 1969 .

[21]  R. Prim Shortest connection networks and some generalizations , 1957 .

[22]  Seymour E. Goodman,et al.  Introduction to the Design and Analysis of Algorithms , 1977 .

[23]  Robert E. Osteen,et al.  Picture Skeletons Based on Eccentricities of Points of Minimum Spanning Trees , 1974, SIAM J. Comput..

[24]  Robert E. Tarjan,et al.  Finding Minimum Spanning Trees , 1976, SIAM J. Comput..

[25]  Richard M. Van Slyke,et al.  Network reliability analysis: Part I , 1971, Networks.

[26]  Ira Pohl,et al.  Graphs, dynamic programming, and finite games , 1967 .

[27]  Alfred V. Aho,et al.  The Design and Analysis of Computer Algorithms , 1974 .

[28]  Charles T. Zahn,et al.  Graph-Theoretical Methods for Detecting and Describing Gestalt Clusters , 1971, IEEE Transactions on Computers.

[29]  Robert B. Dial,et al.  Algorithm 360: shortest-path forest with topological ordering [H] , 1969, CACM.