Structure and mechanical properties of B2 ordered refractory AlNbTiVZrx (x = 0–1.5) high-entropy alloys

Abstract Structure and mechanical properties of the AlNbTiVZrx (x = 0; 0.1; 0.25; 0.5; 1; 1.5) refractory high-entropy alloys were investigated after arc melting and annealing at 1200 °C for 24 h. The AlNbTiV alloy had a B2 ordered single phase structure. Alloying with Zr resulted in (i) change of the degree of order of the B2 phase; and (ii) precipitation of the Zr5Al3 and C14 Laves ZrAlV phases. The density of the AlNbTiVZrx alloys varied from 5590 kg m−3 for the AlNbTiV alloy to 5870 kg m−3 for the AlNbTiVZr1.5 alloy. The compression yield strength at 22 °C increased with an increase in the Zr content from 1000 MPa for the AlNbTiV alloy to 1535 MPa for the AlNbTiVZr1.5 alloy. The plasticity raised from 6% for the AlNbTiV alloy to >50% for the AlNbTiVZr0.5 alloy and then dropped to 0.4% for the AlNbTiVZr1.5 alloy. At 600 °C, the strongest alloy was also the AlNbTiVZr1.5, whereas, at 800 °C, the AlNbTiVZr0.1 alloy demonstrated the maximum strength. The plasticity of the AlNbTiV alloy at 600 °C increased up to 14.3%, while the Zr-containing alloys had lower plasticity. At 800 °C, all the AlNbTiVZrx alloys could be plastically deformed up to 50% of strain without fracture. Ordering in the alloys and the reasons of a complicated dependence of mechanical properties of the AlNbTiVZrx alloys on the Zr content and temperature were discussed.

[1]  A. Singh,et al.  Structure and stability of the B2 phase in Ti–25Al–25Zr alloy , 2009 .

[2]  Oleg N. Senkov,et al.  Effect of aluminum on the microstructure and properties of two refractory high-entropy alloys , 2014 .

[3]  J. Yeh,et al.  Microstructure characterization of AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements , 2005 .

[4]  C. Li,et al.  Effect of aluminum contents on microstructure and properties of AlxCoCrFeNi alloys , 2010 .

[5]  M. Loretto,et al.  Microstructural studies on some ordered Ti-based alloys , 2000 .

[6]  R. Ritchie,et al.  A fracture-resistant high-entropy alloy for cryogenic applications , 2014, Science.

[7]  H. Karnthaler,et al.  On the evolution of a deformation induced nanostructure in a Ni3Al alloy , 2005 .

[8]  N. Stepanov,et al.  Effect of Al on structure and mechanical properties of AlxNbTiVZr (x = 0, 0.5, 1, 1.5) high entropy alloys , 2015 .

[9]  N. Stepanov,et al.  Structure and mechanical properties of the AlCrxNbTiV (x = 0, 0.5, 1, 1.5) high entropy alloys , 2015 .

[10]  J. Yeh,et al.  Effect of Al addition on mechanical properties and microstructure of refractory AlxHfNbTaTiZr alloys , 2015 .

[11]  Junpin Lin,et al.  Disordering induced work softening of Fe–6.5 wt%Si alloy during warm deformation , 2015 .

[12]  K. Das,et al.  Order-disorder transformation of the body centered cubic phase in the Ti-Al-X (X = Ta, Nb, or Mo) system , 2003 .

[13]  R. G. Davies,et al.  The plastic deformation of ordered FeCo and Fe3 Al alloys , 1964 .

[14]  J. Yeh,et al.  Phases, microstructure and mechanical properties of AlxCoCrFeNi high-entropy alloys at elevated temperatures , 2014 .

[15]  Daniel B. Miracle,et al.  Microstructure and Properties of Aluminum-Containing Refractory High-Entropy Alloys , 2014, JOM.

[16]  张勇 Effects of AL addition on microstructure and mechanical properties of AlxCoCrFeNi High-entropy alloy , 2015 .

[17]  V. Starenchenko,et al.  Order-Disorder Phase Transition Induced by Plastic Strain in Cu3pd , 2000 .

[18]  R. Fleischer,et al.  Substitutional solution hardening , 1963 .

[19]  K. Leonard,et al.  Site occupancy preferences in the B2 ordered phase in Nb–rich Nb–Ti–Al alloys , 2002 .

[20]  H. Karnthaler,et al.  Extensive disordering in long-range-ordered Cu3Au induced by severe plastic deformation studied by transmission electron microscopy , 2008 .

[21]  P. A. Blenkinsop,et al.  Effect of aluminiumon ordering of highly stabilised β-Ti-V-Cr alloys , 1998 .

[22]  K. Dahmen,et al.  Microstructures and properties of high-entropy alloys , 2014 .

[23]  Lixian Sun,et al.  The BCC/B2 Morphologies in AlxNiCoFeCr High-Entropy Alloys , 2017 .

[24]  P. Rivera-Díaz-del-Castillo,et al.  Modelling solid solution hardening in high entropy alloys , 2015 .

[25]  A. Singh,et al.  Deformation behavior of an ordered B2 phase in Ti–25Al–25Zr alloy , 2010 .

[26]  Y. Ivanisenko,et al.  Novel Fe36Mn21Cr18Ni15Al10 high entropy alloy with bcc/B2 dual-phase structure , 2017 .

[27]  Nikita Stepanov,et al.  Structure and mechanical properties of a light-weight AlNbTiV high entropy alloy , 2015 .

[28]  Nikita Stepanov,et al.  An AlNbTiVZr0.5 high-entropy alloy combining high specific strength and good ductility , 2015 .

[29]  K. Chattopadhyay,et al.  The nature of dislocations and effect of order in rapidly solidified Fe-(5.5-7.5)wt.%Si alloys , 1993 .

[30]  J. Yeh,et al.  Microstructure and mechanical property of as-cast, -homogenized, and -deformed AlxCoCrFeNi (0 ≤ x ≤ 2) high-entropy alloys , 2009 .

[31]  D. Hu,et al.  Controlling the properties of some ordered Ti-based alloys , 2002 .

[32]  N. Stepanov,et al.  Effect of Al content on structure and mechanical properties of the AlxCrNbTiVZr (x = 0; 0.25; 0.5; 1) high-entropy alloys , 2016 .

[33]  P. A. Blenkinsop,et al.  Effect of aluminium on deformation structure of highly stabilised β-Ti–V–Cr alloys , 1999 .

[34]  Karin A. Dahmen,et al.  Aluminum Alloying Effects on Lattice Types, Microstructures, and Mechanical Behavior of High-Entropy Alloys Systems , 2013 .

[35]  A. Singh,et al.  On the structure of the B2 phase in Ti-Al-Mo alloys , 2008 .

[36]  D. Miracle,et al.  A critical review of high entropy alloys and related concepts , 2016 .

[37]  Paweł T. Jochym,et al.  Microstructure and mechanical properties of the novel Hf25Sc25Ti25Zr25 equiatomic alloy with hexagonal solid solutions , 2016 .

[38]  P. Liaw,et al.  Refractory high-entropy alloys , 2010 .

[39]  Hideyuki Murakami,et al.  Materials Science & Engineering A , 2013 .

[40]  C. Woodward,et al.  Mechanical properties of low-density, refractory multi-principal element alloys of the Cr–Nb–Ti–V–Zr system , 2013 .

[41]  Oleg N. Senkov,et al.  Low-Density, Refractory Multi-Principal Element Alloys of the Cr-Nb-Ti-V-Zr System: Microstructure and Phase Analysis (Postprint) , 2013 .

[42]  D. Miracle,et al.  Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys , 2011 .

[43]  Zhanpeng Jin,et al.  Thermodynamic assessment of the Al-Zr binary system , 2001 .

[44]  H. Fraser,et al.  Characterization of the microstructure of the compositionally complex alloy Al1Mo0.5Nb1Ta0.5Ti1Zr1 , 2016 .

[45]  M. Gibson,et al.  A lightweight single-phase AlTiVCr compositionally complex alloy , 2017 .

[46]  R. Borrajo-Pelaez,et al.  Liquid Phase Sintering of (Ti,Zr)C with WC-Co , 2017, Materials.

[47]  Nikita Stepanov,et al.  Precipitation-strengthened refractory Al0.5CrNbTi2V0.5 high entropy alloy , 2017 .

[48]  K. Ishida,et al.  Stability of B2 ordered phase in the Ti-rich portion of Ti–Al–Cr and Ti–Al–Fe ternary systems , 2000 .

[49]  N. Stepanov,et al.  Tensile properties of the Cr–Fe–Ni–Mn non-equiatomic multicomponent alloys with different Cr contents , 2015 .

[50]  Xiao Yang,et al.  Microstructures and Crackling Noise of AlxNbTiMoV High Entropy Alloys , 2014, Entropy.

[51]  C. Gammer,et al.  Electron microscopy of severely deformed L12 intermetallics , 2010 .

[52]  T. Shun,et al.  Nanostructured High‐Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes , 2004 .