The journey of tetanus and botulinum neurotoxins in neurons.

Anaerobic bacteria of the genus Clostridia are a major threat to human and animal health, being responsible for pathologies ranging from food poisoning to gas gangrene. In each of these, the production of sophisticated exotoxins is the main cause of disease. The most powerful clostridial toxins are tetanus and botulinum neurotoxins, the causative agents of tetanus and botulism. They are structurally organized into three domains endowed with distinct functions: high affinity binding to neurons, membrane translocation and specific cleavage of proteins controlling neuroexocytosis. Recent discoveries regarding the mechanism of membrane recruitment and sorting of these neurotoxins within neurons make them ideal tools to uncover essential aspects of neuronal physiology in health and disease.

[1]  T. B. Cooley,et al.  THE BACTERIAL TOXINS. , 1901 .

[2]  H. Hauri,et al.  Lectins and traffic in the secretory pathway , 2000, FEBS letters.

[3]  K. Acharya,et al.  Botulinum and tetanus neurotoxins: structure, function and therapeutic utility. , 2002, Trends in biochemical sciences.

[4]  Edwin R. Chapman,et al.  Synaptotagmin: A Ca2+ sensor that triggers exocytosis? , 2002, Nature Reviews Molecular Cell Biology.

[5]  R. Stevens,et al.  Crystal structure of botulinum neurotoxin type A and implications for toxicity , 1998, Nature Structural Biology.

[6]  G. Schiavo,et al.  Bacterial protein toxins penetrate cells via a four‐step mechanism , 1994, FEBS letters.

[7]  G. Schiavo,et al.  Analysis of retrograde transport in motor neurons reveals common endocytic carriers for tetanus toxin and neurotrophin receptor p75NTR , 2002, The Journal of cell biology.

[8]  L. Goldstein,et al.  Microtubule-based transport systems in neurons: the roles of kinesins and dyneins. , 2000, Annual review of neuroscience.

[9]  E. Habermann,et al.  Clostridial neurotoxins: handling and action at the cellular and molecular level. , 1986, Current topics in microbiology and immunology.

[10]  B. Davletov,et al.  Getting muscles moving again after botulinum toxin: novel therapeutic challenges. , 2003, Trends in molecular medicine.

[11]  J. Alves,et al.  Two carbohydrate binding sites in the H(CC)-domain of tetanus neurotoxin are required for toxicity. , 2003, Journal of molecular biology.

[12]  R. Stevens,et al.  Sequence homology and structural analysis of the clostridial neurotoxins. , 1999, Journal of molecular biology.

[13]  J. Milbrandt,et al.  Lipid rafts in neuronal signaling and function , 2002, Trends in Neurosciences.

[14]  R. Kahn,et al.  Cellular hijacking: a common strategy for microbial infection. , 2002, Trends in biochemical sciences.

[15]  C. Hetz,et al.  Thy-1 binds to integrin β3 on astrocytes and triggers formation of focal contact sites , 2001, Current Biology.

[16]  G. Schiavo,et al.  Synaptic vesicle endocytosis mediates the entry of tetanus neurotoxin into hippocampal neurons. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[17]  M. Montal,et al.  Translocation of botulinum neurotoxin light chain protease through the heavy chain channel , 2003, Nature Structural Biology.

[18]  S. Swaminathan,et al.  Structure of the receptor binding fragment HC of tetanus neurotoxin , 1997, Nature Structural Biology.

[19]  P. Emsley,et al.  The Crystal Structure of Tetanus Toxin Hc Fragment Complexed with a Synthetic GT1b Analogue Suggests Cross-linking between Ganglioside Receptors and the Toxin* , 2001, The Journal of Biological Chemistry.

[20]  S. Swaminathan,et al.  Structural analysis of the catalytic and binding sites of Clostridium botulinum neurotoxin B , 2000, Nature Structural Biology.

[21]  C. Schengrund,et al.  Botulinum Neurotoxin A Activity Is Dependent upon the Presence of Specific Gangliosides in Neuroblastoma Cells Expressing Synaptotagmin I* , 2002, The Journal of Biological Chemistry.

[22]  P. Emsley,et al.  The Structures of the HC Fragment of Tetanus Toxin with Carbohydrate Subunit Complexes Provide Insight into Ganglioside Binding* , 2000, The Journal of Biological Chemistry.

[23]  N. Fairweather,et al.  Analysis of mutants of tetanus toxin HC fragment: ganglioside binding, cell binding and retrograde axonal transport properties , 2000, Molecular microbiology.

[24]  G. Schiavo,et al.  Myosin Va and microtubule-based motors are required for fast axonal retrograde transport of tetanus toxin in motor neurons , 2003, Journal of Cell Science.

[25]  G. Schiavo,et al.  C-terminal half of tetanus toxin fragment C is sufficient for neuronal binding and interaction with a putative protein receptor. , 2000, The Biochemical journal.

[26]  L. Williamson,et al.  Neuronal Sensitivity to Tetanus Toxin Requires Gangliosides* , 1999, The Journal of Biological Chemistry.

[27]  Raymond C. Stevens,et al.  Cocrystal structure of synaptobrevin-II bound to botulinum neurotoxin type B at 2.0 Å resolution , 2000, Nature Structural Biology.

[28]  J. Alves,et al.  Arg(362) and Tyr(365) of the botulinum neurotoxin type a light chain are involved in transition state stabilization. , 2002, Biochemistry.

[29]  L. Pike Lipid rafts Published, JLR Papers in Press, February 1, 2003. DOI 10.1194/jlr.R200021-JLR200 , 2003, Journal of Lipid Research.

[30]  A. Pastor,et al.  Effects of botulinum neurotoxin type A on abducens motoneurons in the cat: alterations of the discharge pattern , 1997, Neuroscience.

[31]  Yasushi Hiraoka,et al.  Mutations in Dynein Link Motor Neuron Degeneration to Defects in Retrograde Transport , 2003, Science.

[32]  C. Montecucco How do tetanus and botulinum toxins bind to neuronal membranes , 1986 .

[33]  Eugene M. Johnson,et al.  Retrograde transport of nerve growth factor (NGF) in motoneurons of developing rats: Assessment of potential neurotrophic effects , 1988, Neuron.

[34]  D. Zurakowski,et al.  Thy-1 is critical for normal retinal development. , 1999, Brain research. Developmental brain research.

[35]  C. Gil,et al.  C-terminal fragment of tetanus toxin heavy chain activates Akt and MEK/ERK signalling pathways in a Trk receptor-dependent manner in cultured cortical neurons. , 2003, The Biochemical journal.

[36]  G. Schiavo,et al.  Lipid rafts act as specialized domains for tetanus toxin binding and internalization into neurons. , 2001, Molecular biology of the cell.

[37]  Rainer Merkl,et al.  The genome sequence of Clostridium tetani, the causative agent of tetanus disease , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[38]  M. McComb,et al.  The cytosolic entry of diphtheria toxin catalytic domain requires a host cell cytosolic translocation factor complex , 2003, Journal of Cell Biology.

[39]  G. Schiavo,et al.  Functional characterisation of tetanus and botulinum neurotoxins binding domains. , 1999, Journal of cell science.

[40]  G. Schiavo,et al.  Tetanus Toxin Fragment C Binds to a Protein Present in Neuronal Cell Lines and Motoneurons , 2000, Journal of neurochemistry.

[41]  Kazuki Sato,et al.  The high‐affinity binding of Clostridium botulinum type B neurotoxin to synaptotagmin II associated with gangliosides GT1b/GD1a , 1996, FEBS letters.

[42]  C. V. von Bartheld,et al.  Connecting the dots: trafficking of neurotrophins, lectins and diverse pathogens by binding to the neurotrophin receptor p75NTR , 2003, The European journal of neuroscience.

[43]  Y. Humeau,et al.  How botulinum and tetanus neurotoxins block neurotransmitter release. , 2000, Biochimie.

[44]  Richard H. Scheller,et al.  SNARE-mediated membrane fusion , 2001, Nature Reviews Molecular Cell Biology.

[45]  S. Abraham,et al.  Microbial entry through caveolae: variations on a theme , 2002, Cellular microbiology.

[46]  G. Schiavo,et al.  Neurotoxins affecting neuroexocytosis. , 2000, Physiological reviews.

[47]  Y. Kamata,et al.  Expression of botulinum toxin binding sites in Xenopus oocytes , 1997, Infection and immunity.

[48]  Jean-René Martin,et al.  Targeted expression of tetanus toxin: a new tool to study the neurobiology of behavior. , 2002, Advances in genetics.

[49]  P. Boquet,et al.  High sensitivity of mouse neuronal cells to tetanus toxin requires a GPI-anchored protein. , 2001, Biochemical and biophysical research communications.

[50]  L. Simpson Botulinum neurotoxin and tetanus toxin , 1989 .

[51]  H. Wellhöner CHAPTER 10 – Clostridial Toxins and the Central Nervous System: Studies on In Situ Tissues , 1989 .

[52]  F. Gisou van der Goot,et al.  The bacterial toxin toolkit , 2001, Nature Reviews Molecular Cell Biology.

[53]  R. Venable,et al.  Identification of a binding site for ganglioside on the receptor binding domain of tetanus toxin. , 2002, Biochemistry.

[54]  P. Brûlet,et al.  Construction of hybrid proteins that migrate retrogradely and transynaptically into the central nervous system. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[55]  T. Karasawa,et al.  Sequence of the gene for Clostridium botulinum type B neurotoxin associated with infant botulism, expression of the C-terminal half of heavy chain and its binding activity. , 2003, Biochimica et biophysica acta.

[56]  S. Leppla,et al.  Anthrax toxin triggers endocytosis of its receptor via a lipid raft–mediated clathrin-dependent process , 2003, The Journal of cell biology.

[57]  K. Takamiya,et al.  Gangliosides are the binding substances in neural cells for tetanus and botulinum toxins in mice. , 1999, Biochimica et biophysica acta.

[58]  P. Foran,et al.  Recombinant Forms of Tetanus Toxin Engineered for Examining and Exploiting Neuronal Trafficking Pathways* , 2001, The Journal of Biological Chemistry.

[59]  R. Stevens,et al.  Active-site mutagenesis of tetanus neurotoxin implicates TYR-375 and GLU-271 in metalloproteolytic activity. , 2001, Toxicon : official journal of the International Society on Toxinology.

[60]  G. Schiavo,et al.  Lipid microdomains are involved in neurospecific binding and internalisation of clostridial neurotoxins. , 2002, International journal of medical microbiology : IJMM.

[61]  Ronald D Vale,et al.  The Molecular Motor Toolbox for Intracellular Transport , 2003, Cell.

[62]  P. Brûlet,et al.  Retrograde trans-synaptic transfer of green fluorescent protein allows the genetic mapping of neuronal circuits in transgenic mice , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[63]  C. Montecucco,et al.  Site-directed mutagenesis identifies active-site residues of the light chain of botulinum neurotoxin type A. , 2001, Biochemical and biophysical research communications.

[64]  C. Montecucco,et al.  Internalization and Proteolytic Action of Botulinum Toxins in CNS Neurons and Astrocytes , 1999, Journal of neurochemistry.

[65]  L. Williamson,et al.  Botulinum Neurotoxin a Blocks Synaptic Vesicle Exocytosis but Not Endocytosis at the Nerve Terminal , 1999, The Journal of cell biology.

[66]  P. Brûlet,et al.  Neuronal activity-dependent membrane traffic at the neuromuscular junction , 2002, Proceedings of the National Academy of Sciences of the United States of America.