Complex digital Laguerre filter design with weighted least square error subject to magnitude and phase constraints

Complex coefficient optimal digital Laguerre filter design with arbitrary asymmetric frequency response is developed. The optimization scheme is based on the weighted least square error criterion with complex Chebyshev error used as its magnitude and phase constraints. Developed version of the active set method has been exploited to solve the resultant semi-infinite quadratic programming problem. A quick and practical approach is proposed to evaluate the suboptimal value of the Laguerre parameter close to its optimum value. The design technique can be applied to design of asymmetric FIR filters just by setting the Laguerre parameter equal to zero. The accuracy of the processes has been verified by illustrating some numerical examples.

[1]  S. Abeysekera,et al.  Design of optimal and narrow-band Laguerre filters for sigma-delta demodulators , 2003, IEEE Trans. Circuits Syst. II Express Briefs.

[2]  A. H. Nuttall,et al.  A general Chebyshev complex function approximation procedure and an application to beamforming , 1982 .

[3]  Ingvar Claesson,et al.  A semi-infinite quadratic programming algorithm with applications to array pattern synthesis , 2001 .

[4]  E. Anderson Linear Programming In Infinite Dimensional Spaces , 1970 .

[5]  B. Wahlberg System identification using Laguerre models , 1991 .

[6]  P. Bello Characterization of Randomly Time-Variant Linear Channels , 1963 .

[7]  John S. D. Mason,et al.  Complex Chebyshev approximation for FIR digital filters , 1991, IEEE Trans. Signal Process..

[8]  S. Pei,et al.  Complex eigenfilter design of arbitrary complex coefficient FIR digital filters , 1993 .

[9]  David G. Luenberger,et al.  Linear and nonlinear programming , 1984 .

[10]  Kenneth Steiglitz,et al.  Design of FIR digital phase networks , 1981 .

[11]  Tomás Oliveira e Silva,et al.  Optimality conditions for truncated Laguerre networks , 1994, IEEE Trans. Signal Process..

[12]  C. Bruni Analysis of approximation of linear and time-invariant systems pulse response by means of laguerre finite term expansion , 1964 .

[13]  M. S. Bazaraa,et al.  Nonlinear Programming , 1979 .

[14]  S.S. Abeysekera,et al.  Design of narrow-band Laguerre filters using a min-max criterion , 2000, 2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.00CH37100).

[15]  Amin Zollanvari,et al.  An Extended ε-Perturbation Method to the Problem of Semi-Infinite Quadratic Programming in Constrained FIR Filter Design , 2006, 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings.

[16]  Nasir Ahmed,et al.  Optimum Laguerre networks for a class of discrete-time systems , 1991, IEEE Trans. Signal Process..

[17]  Philip M. Woodward,et al.  Probability and Information Theory with Applications to Radar , 1954 .

[18]  John G. Proakis,et al.  Digital Communications , 1983 .

[19]  Mohammad Ali Masnadi-Shirazi,et al.  Adaptive Laguerre network realization , 2000, Signal Process..

[20]  C. Helstrom,et al.  Statistical theory of signal detection , 1968 .

[21]  Klaus Preuss,et al.  On the design of FIR filters by complex Chebyshev approximation , 1989, IEEE Trans. Acoust. Speech Signal Process..

[22]  Mohammad Ali Masnadi-Shirazi,et al.  Laguerre discrete-time filter design , 2003, Comput. Electr. Eng..

[23]  Saman S. Abeysekera,et al.  Design of variable Laguerre filters , 2002, 2002 IEEE International Symposium on Circuits and Systems. Proceedings (Cat. No.02CH37353).

[24]  Kok Lay Teo,et al.  The dual parameterization approach to optimal least square FIR filter design subject to maximum error constraints , 2000, IEEE Trans. Signal Process..

[25]  N. Ahmed,et al.  Laguerre approximation of nonrecursive discrete-time systems , 1990, International Conference on Acoustics, Speech, and Signal Processing.

[26]  J. L. Sullivan,et al.  New approaches to constrained optimization of digital filters , 1993, 1993 IEEE International Symposium on Circuits and Systems.

[27]  Truong Q. Nguyen The design of arbitrary FIR digital filters using the eigenfilter method , 1993, IEEE Trans. Signal Process..

[28]  Kok Lay Teo,et al.  Frequency domain design for digital Laguerre networks , 2000 .

[29]  Chih-Jen Lin,et al.  Solving quadratic semi-infinite programming problems by using relaxed cutting-plane scheme , 2001 .

[30]  C. Sidney Burrus,et al.  Constrained least square design of FIR filters without specified transition bands , 1996, IEEE Trans. Signal Process..

[31]  T. W. Parks,et al.  Digital Filter Design , 1987 .

[32]  J. L. Sullivan,et al.  A new nonlinear optimization algorithm for asymmetric FIR digital filters , 1994, Proceedings of IEEE International Symposium on Circuits and Systems - ISCAS '94.

[33]  Thomas W. Parks,et al.  Optimal design of FIR filters with the complex Chebyshev error criteria , 1995, IEEE Trans. Signal Process..

[34]  Ingvar Claesson,et al.  Optimum window design by semi-infinite quadratic programming , 1999, IEEE Signal Processing Letters.

[35]  Kok Lay Teo,et al.  A dual parameterization algorithm for linear quadratic semi-infinite programming problems , 2001 .

[36]  S. Kay Fundamentals of statistical signal processing: estimation theory , 1993 .

[37]  Kok Lay Teo,et al.  Digital Laguerre filter design with maximum passband-to-stopband energy ratio subject to peak and Group delay constraints , 2006, IEEE Transactions on Circuits and Systems I: Regular Papers.

[38]  Jennifer Adams,et al.  FIR digital filters with least-squares stopbands subject to peak-gain constraints , 1991 .

[39]  Thomas W. Parks,et al.  Design of FIR filters in the complex domain , 1987, IEEE Trans. Acoust. Speech Signal Process..

[40]  C. Sidney Burrus,et al.  A modified algorithm for constrained least square design of multiband FIR filters without specified transition bands , 1998, IEEE Trans. Signal Process..

[41]  Mohammad Ali Masnadi-Shirazi,et al.  Laguerre digital filter design , 1995, 1995 International Conference on Acoustics, Speech, and Signal Processing.

[42]  M.A. Masnadi-Shirazi,et al.  Laguerre network design in complex domain , 2000, ICECS 2000. 7th IEEE International Conference on Electronics, Circuits and Systems (Cat. No.00EX445).

[43]  Amin Zollanvari,et al.  An Extended Dual Parameterization Method to Constrained Least Square Laguerre Filter Design , 2006, 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings.