Growth Hormone in Combination with Bisphosphonate Treatment in Osteogenesis Imperfecta.

[1]  Elena Monti,et al.  Current and emerging treatments for the management of osteogenesis imperfecta , 2010, Therapeutics and clinical risk management.

[2]  C. Rotimi,et al.  Lack of cyclophilin B in osteogenesis imperfecta with normal collagen folding. , 2010, The New England journal of medicine.

[3]  F. Glorieux,et al.  Relationship between genotype and skeletal phenotype in children and adolescents with osteogenesis imperfecta , 2009, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[4]  G. Pals,et al.  PPIB mutations cause severe osteogenesis imperfecta. , 2009, American journal of human genetics.

[5]  Hironori Ito,et al.  Bisphosphonate Therapy for Osteogenesis Imperfecta , 2009 .

[6]  L. Samson-Fang,et al.  Effects of bisphosphonates in children with osteogenesis imperfecta: an AACPDM systematic review , 2009, Developmental medicine and child neurology.

[7]  G. Mortier,et al.  Recessive osteogenesis imperfecta caused by LEPRE1 mutations: clinical documentation and identification of the splice form responsible for prolyl 3-hydroxylation , 2008, Journal of Medical Genetics.

[8]  John J. Mitchell,et al.  CRTAP and LEPRE1 mutations in recessive osteogenesis imperfecta , 2008, Human mutation.

[9]  D. Wenkert,et al.  Bisphosphonate‐Induced Osteopetrosis: Novel Bone Modeling Defects, Metaphyseal Osteopenia, and Osteosclerosis Fractures After Drug Exposure Ceases , 2008, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[10]  G. Mazziotti,et al.  Growth hormone, insulin-like growth factors, and the skeleton. , 2008, Endocrine reviews.

[11]  G. Gamble,et al.  Bone formation markers in adults with mild osteogenesis imperfecta. , 2007, Clinical chemistry.

[12]  F. Glorieux,et al.  Long-bone changes after pamidronate discontinuation in children and adolescents with osteogenesis imperfecta. , 2007, Bone.

[13]  F. Glorieux,et al.  Consortium for osteogenesis imperfecta mutations in the helical domain of type I collagen: regions rich in lethal mutations align with collagen binding sites for integrins and proteoglycans , 2007, Human mutation.

[14]  R. Russell,et al.  Bisphosphonates: Mode of Action and Pharmacology , 2007, Pediatrics.

[15]  F. Glorieux Experience With Bisphosphonates in Osteogenesis Imperfecta , 2007, Pediatrics.

[16]  J. Mulvihill,et al.  Deficiency of cartilage-associated protein in recessive lethal osteogenesis imperfecta. , 2006, The New England journal of medicine.

[17]  F. Glorieux,et al.  CRTAP Is Required for Prolyl 3- Hydroxylation and Mutations Cause Recessive Osteogenesis Imperfecta , 2006, Cell.

[18]  L. Tatò,et al.  Osteogenesis imperfecta: clinical, biochemical and molecular findings , 2006, Clinical genetics.

[19]  S. Adami,et al.  Early bisphosphonate treatment in infants with severe osteogenesis imperfecta. , 2006, The Journal of pediatrics.

[20]  E. Spada,et al.  Italian cross-sectional growth charts for height, weight and BMI (2 to 20 yr) , 2006, Journal of endocrinological investigation.

[21]  F. Glorieux,et al.  Pamidronate in children with osteogenesis imperfecta: histomorphometric effects of long-term therapy. , 2006, The Journal of clinical endocrinology and metabolism.

[22]  F. Glorieux,et al.  Effects of Intravenous Pamidronate Treatment in Infants With Osteogenesis Imperfecta: Clinical and Histomorphometric Outcome , 2005, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[23]  A. Patwardhan,et al.  Effects of Growth Hormone Transgene Expression on Vertebrae in a Mouse Model of Osteogenesis Imperfecta , 2005, Spine.

[24]  J. Troendle,et al.  Controlled Trial of Pamidronate in Children With Types III and IV Osteogenesis Imperfecta Confirms Vertebral Gains but Not Short‐Term Functional Improvement , 2005, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[25]  D. Jarjoura,et al.  Growth Hormone Injections Improve Bone Quality in a Mouse Model of Osteogenesis Imperfecta , 2005, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[26]  L. Tatò,et al.  Intravenous Neridronate in Children With Osteogenesis Imperfecta: A Randomized Controlled Study , 2004, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[27]  J. Mahan,et al.  Treatment of poor linear growth in a patient with osteogenesis imperfecta type III. , 2004, Clinical therapeutics.

[28]  S. Adami,et al.  Bone turnover markers in patients with osteogenesis imperfecta. , 2004, Bone.

[29]  F. Glorieux,et al.  Height and weight development during four years of therapy with cyclical intravenous pamidronate in children and adolescents with osteogenesis imperfecta types I, III, and IV. , 2003, Pediatrics.

[30]  George P Chrousos,et al.  Positive Linear Growth and Bone Responses to Growth Hormone Treatment in Children With Types III and IV Osteogenesis Imperfecta: High Predictive Value of the Carboxyterminal Propeptide of Type I Procollagen , 2003, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[31]  A. Yergey,et al.  Effect of growth hormone treatment on calcium kinetics in patients with osteogenesis imperfecta type III and IV. , 1999, Bone.

[32]  A. Lund,et al.  Anthropometry of patients with osteogenesis imperfecta , 1999, Archives of disease in childhood.

[33]  H. Kodama,et al.  Osteogenesis imperfecta: Are fractures and growth hormone treatment linked? , 1998, The Journal of pediatrics.

[34]  C. Ohlsson,et al.  Growth hormone and bone. , 1998, Endocrine reviews.

[35]  L. Tatò,et al.  Growth hormone treatment in osteogenesis imperfecta with quantitative defect of type I collagen synthesis. , 1996, The Journal of pediatrics.

[36]  D R Carter,et al.  New approaches for interpreting projected bone densitometry data , 1992, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[37]  G. Rodan,et al.  Increased activity of insulin-like growth factor (IGF) in osteoblastic cells in the presence of growth hormone (GH): positive correlation with the presence of the GH-induced IGF-binding protein BP-3. , 1990, Endocrinology.

[38]  S. Mohan,et al.  Skeletal growth factor and other growth factors known to be present in bone matrix stimulate proliferation and protein synthesis in human bone cells , 1990, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[39]  H. Kruse,et al.  On an Attempt to Treat Primary and Secondary Osteoporosis with Human Growth Hormone* , 1975, Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolisme.

[40]  G. Pals,et al.  Classification of Osteogenesis Imperfecta revisited. , 2010, European journal of medical genetics.

[41]  J. Marini,et al.  Null mutations in LEPRE1 and CRTAP cause severe recessive osteogenesis imperfecta , 2009, Cell and Tissue Research.

[42]  R. Brenner,et al.  Osteogenesis imperfecta: A clinical study of the first ten years of life , 2004, Calcified Tissue International.

[43]  H. Nakajima,et al.  Growth Hormone Therapy May Increase Fracture Risk in a Pubertal Patient with Osteogenesis Imperfecta , 2002, Journal of Pediatric Endocrinology & Metabolism (JPEM).

[44]  S. Adami,et al.  Radial Bending Breaking Resistance Derived by Densitometric Evaluation Predicts Femoral Neck Fracture , 2001, Osteoporosis International.

[45]  G. Chrousos,et al.  The growth hormone and somatomedin axis in short children with osteogenesis imperfecta. , 1993, The Journal of clinical endocrinology and metabolism.

[46]  E. Canalis,et al.  Regulatory effects of insulin-like growth factors I and II on bone collagen synthesis in rat calvarial cultures. , 1989, Endocrinology.

[47]  E. Canalis,et al.  Insulin-like growth factor I has independent effects on bone matrix formation and cell replication. , 1988, Endocrinology.