Effect of different solute additions on dendrite morphology and orientation selection in cast binary magnesium alloys

Abstract In solidification, dendritic morphology was observed to change accordingly if either the type or quantity of the additional element was modified. To gain insight into this phenomenon, the 3D dendrite morphology of different binary magnesium alloys, including MgAl, MgBa, MgCa and MgZn alloys was characterized using synchrotron X-ray tomography and electron backscattered diffraction. Results showed that for most Mg-based alloys, the dendrite exhibited a typical 18-branch morphology with preferred growth orientations along 〈 11 2 ¯ 0 〉 and 〈 11 2 ¯ 3 〉 , whereas for MgZn alloys, the dendrite morphology would change from the 18-branch pattern to 12-branch if the Zn content increased, i.e. the so-called dendrite orientation transition (DOT) took place. This DOT behaviour of the Mg alloy dendrite was then successfully modelled using the 3D phase field method by changing the magnitude of related parameters in the specially formulated anisotropy function based on spherical harmonics.

[1]  M. Kara,et al.  Symmetrized multipole analysis of orientational distributions , 1981 .

[2]  Long-Qing Chen Phase-Field Models for Microstructure Evolution , 2002 .

[3]  H. Nguyen-Thi,et al.  Tip-splitting instability and transition to seaweed growth during alloy solidification in anisotropically preferred growth direction , 2014 .

[4]  J. Eiken Phase-field simulation of microstructure formation in technical magnesium alloys , 2010 .

[5]  W. Kurz,et al.  Fundamentals of Solidification , 1990 .

[6]  A. Karma,et al.  Atomistic and continuum modeling of dendritic solidification , 2003 .

[7]  S. Vosko,et al.  A product representation for cubic harmonics and special directions for the determination of the Fermi surface and related properties , 1976 .

[8]  S. Xiong,et al.  Two- and three- dimensional studies of dendritic morphology in magnesium alloy by means of synchrotron X-ray microtomography and cellular automaton modelling , 2015 .

[9]  Rongshan Qin,et al.  Surface energy and its anisotropy of hexagonal close-packed metals , 2014 .

[10]  Zhipeng Guo,et al.  On solving the 3-D phase field equations by employing a parallel-adaptive mesh refinement (Para-AMR) algorithm , 2015, Comput. Phys. Commun..

[11]  G. Chadwick A Hard-Sphere Model of Crystal Growth , 1967 .

[12]  M. Rappaz,et al.  Grain Selection and Texture Evolution in Directionally Solidified Al-Zn Alloys , 2008 .

[13]  J. Dantzig,et al.  Phase-field modeling of the dendrite orientation transition in Al-Zn alloys , 2012 .

[14]  R. Trivedi,et al.  Crystal–Melt Interfaces and Solidification Morphologies in Metals and Alloys , 2004 .

[15]  A. Karma,et al.  Crystal-melt interfacial free energies in hcp metals: A molecular dynamics study of Mg , 2006 .

[16]  H. Biloni,et al.  The dendritic morphology in Zn-Cd dilute alloys , 1972 .

[17]  K. Pettersen,et al.  Crystallography of directionally solidified magnesium alloy AZ91 , 1989 .

[18]  Michel Rappaz,et al.  Orientation selection in dendritic evolution , 2006, Nature materials.

[19]  N. Chawla,et al.  Growth orientations and morphologies of α-Mg dendrites in Mg–Zn alloys , 2012 .

[20]  Application of the phase-field method to the solidification of hot-dipped galvanized coatings , 2000 .

[21]  M. Rappaz,et al.  Dendritic Growth Morphologies in Al-Zn Alloys—Part I: X-ray Tomographic Microscopy , 2013, Metallurgical and Materials Transactions A.

[22]  M. Rappaz,et al.  Dendritic Growth Morphologies in Al-Zn Alloys—Part II: Phase-Field Computations , 2013, Metallurgical and Materials Transactions A.

[23]  B. Chalmers,et al.  FURTHER OBSERVATIONS ON DENDRITIC GROWTH IN METALS , 1952 .

[24]  Xiong Shoumei,et al.  MICROSTRUCTURE SIMULATION OF HIGH PRESSURE DIE CAST MAGNESIUM ALLOY BASED ON MODIFIED CA METHOD , 2010 .

[25]  S. Xiong,et al.  Microstructure Characteristics of the Eutectics of Die Cast AM60B Magnesium Alloy , 2011 .

[26]  M. Rappaz,et al.  Dendrite growth morphologies in aluminium alloys , 1998 .

[27]  M. Rappaz,et al.  Dendrite growth directions in aluminum-zinc alloys , 2006 .

[28]  John Aurie Dean,et al.  Lange's Handbook of Chemistry , 1978 .

[29]  I. Steinbach Phase-field models in materials science , 2009 .

[30]  S. Xiong,et al.  Characterisation of the 3-D dendrite morphology of magnesium alloys using synchrotron X-ray tomography and 3-D phase-field modelling , 2015 .

[31]  R. Trivedi,et al.  Solidification microstructures and solid-state parallels: Recent developments, future directions , 2009 .

[32]  M. Rappaz,et al.  EBSD Characterization of Dendrite Growth Directions, Texture and Misorientations in Hot-Dipped Al - Zn - Si Coatings , 2001 .

[33]  C. Gandin,et al.  A coupled finite element-cellular automaton model for the prediction of dendritic grain structures in solidification processes , 1994 .

[34]  O. Lohne,et al.  Dendritic solidification of magnesium alloy AZ91 , 1990 .