Improved Climate Simulation by MIROC5: Mean States, Variability, and Climate Sensitivity

Abstract A new version of the atmosphere–ocean general circulation model cooperatively produced by the Japanese research community, known as the Model for Interdisciplinary Research on Climate (MIROC), has recently been developed. A century-long control experiment was performed using the new version (MIROC5) with the standard resolution of the T85 atmosphere and 1° ocean models. The climatological mean state and variability are then compared with observations and those in a previous version (MIROC3.2) with two different resolutions (medres, hires), coarser and finer than the resolution of MIROC5. A few aspects of the mean fields in MIROC5 are similar to or slightly worse than MIROC3.2, but otherwise the climatological features are considerably better. In particular, improvements are found in precipitation, zonal mean atmospheric fields, equatorial ocean subsurface fields, and the simulation of El Nino–Southern Oscillation. The difference between MIROC5 and the previous model is larger than that between th...

[1]  G. Mellor,et al.  A Hierarchy of Turbulence Closure Models for Planetary Boundary Layers. , 1974 .

[2]  A. Arakawa,et al.  Interaction of a Cumulus Cloud Ensemble with the Large-Scale Environment, Part I , 1974 .

[3]  R. Colony,et al.  The thickness distribution of sea ice , 1975 .

[4]  Stephen J. Lord,et al.  Interaction of a Cumulus Cloud Ensemble with the Large-Scale Environment. Part III: Semi-Prognostic Test of the Arakawa-Schubert Cumulus Parameterization , 1982 .

[5]  G. Mellor,et al.  Development of a turbulence closure model for geophysical fluid problems , 1982 .

[6]  A. Arakawa,et al.  Vertical Differencing of the Primitive Equations in Sigma Coordinates , 1983 .

[7]  Bruce R. Barkstrom,et al.  The Earth Radiation Budget Experiment (ERBE). , 1984 .

[8]  K. Bryan Accelerating the Convergence to Equilibrium of Ocean-Climate Models , 1984 .

[9]  M. Prather Numerical advection by conservation of second-order moments. [for trace element spatial distribution and chemical interaction in atmosphere] , 1986 .

[10]  Zhaoxin Li,et al.  Sensitivity of an atmospheric general circulation model to prescribed SST changes: feedback effects associated with the simulation of cloud optical properties , 1991 .

[11]  Robert M. Chervin,et al.  Ocean general circulation from a global eddy‐resolving model , 1992 .

[12]  Cumulus Ensemble Simulation , 1993 .

[13]  L. Talley Distribution and Formation of North Pacific Intermediate Water , 1993 .

[14]  J. Hansen,et al.  Stratospheric aerosol optical depths, 1850–1990 , 1993 .

[15]  K. Emanuel,et al.  The Representation of Cumulus Convection in Numerical Models , 1993 .

[16]  P. Gent,et al.  Parameterizing eddy-induced tracer transports in ocean circulation models , 1995 .

[17]  B. Liebmann,et al.  Description of a complete (interpolated) outgoing longwave radiation dataset , 1996 .

[18]  A. Arakawa,et al.  Vertical Differencing of the Primitive Equations Based on the Charney–Phillips Grid in Hybrid &sigma–p Vertical Coordinates , 1996 .

[19]  K. Trenberth,et al.  Earth's annual global mean energy budget , 1997 .

[20]  Sensitivity of an atmospheric general circulation model to the parameterization of leads in sea ice , 1997 .

[21]  Zong-Liang Yang,et al.  Validation of the Snow Submodel of the Biosphere-Atmosphere Transfer Scheme with Russian Snow Cover and Meteorological Observational Data , 1997 .

[22]  Ichiro Yasuda,et al.  The origin of the North Pacific Intermediate Water , 1997 .

[23]  P. Xie,et al.  Global Precipitation: A 17-Year Monthly Analysis Based on Gauge Observations, Satellite Estimates, and Numerical Model Outputs , 1997 .

[24]  David A. Randall,et al.  A cumulus parameterization with a prognostic closure , 1998 .

[25]  Geir Evensen,et al.  Coordinate Transformation on a Sphere Using Conformal Mapping , 1999 .

[26]  Matthew C. Wheeler,et al.  Convectively Coupled Equatorial Waves: Analysis of Clouds and Temperature in the Wavenumber–Frequency Domain , 1999 .

[27]  William H. Lipscomb,et al.  An energy-conserving thermodynamic model of sea ice , 1999 .

[28]  Damian R. Wilson,et al.  A microphysically based precipitation scheme for the UK meteorological office unified model , 1999 .

[29]  N. Ramankutty,et al.  Estimating historical changes in global land cover: Croplands from 1700 to 1992 , 1999 .

[30]  Yign Noh,et al.  Simulations of temperature and turbulence structure of the oceanic boundary layer with the improved near-surface process , 1999 .

[31]  K. Akitomo,et al.  Tidal Exchange through the Kuril Straits , 2000 .

[32]  H. Hasumi,et al.  CCSR Ocean Component Model (COCO), version 2.1 , 2000 .

[33]  Marika M. Holland,et al.  Simulating the ice‐thickness distribution in a coupled climate model , 2001 .

[34]  Michael Steele,et al.  PHC: A Global Ocean Hydrography with a High-Quality Arctic Ocean , 2001 .

[35]  Mikio Nakanish,et al.  Improvement Of The Mellor–Yamada Turbulence Closure Model Based On Large-Eddy Simulation Data , 2001 .

[36]  Frank Röske An atlas of surface fluxes based on the ECMWF Re-Analysis- a climatological dataset to force global ocean general circulation models , 2001 .

[37]  Nick Rayner,et al.  Adjusting for sampling density in grid box land and ocean surface temperature time series , 2001 .

[38]  W. Lipscomb Remapping the thickness distribution in sea ice models , 2001 .

[39]  Frank O. Bryan,et al.  Equatorial Circulation of a Global Ocean Climate Model with Anisotropic Horizontal Viscosity , 2001 .

[40]  D. Gregory Estimation of entrainment rate in simple models of convective clouds , 2001 .

[41]  G. Ierley General Circulation Models , 2001 .

[42]  K. Sudo,et al.  CHASER: A global chemical model of the troposphere 1. Model description , 2002 .

[43]  V. Pope,et al.  The processes governing horizontal resolution sensitivity in a climate model , 2002 .

[44]  N. Suginohara,et al.  Effects of Bottom Boundary Layer Parameterization on Reproducing Deep and Bottom Waters in a World Ocean Model , 2002 .

[45]  R. DeFries,et al.  Global distribution of C3 and C4 vegetation: Carbon cycle implications , 2003 .

[46]  Kumiko Takata,et al.  Development of the minimal advanced treatments of surface interaction and runoff , 2003 .

[47]  S. Kanae,et al.  Global water resources assessment under climatic change in 2050 using TRIP , 2003 .

[48]  Jonathan M. Gregory,et al.  A new method for diagnosing radiative forcing and climate sensitivity , 2004 .

[49]  A. Lacis,et al.  Calculation of radiative fluxes from the surface to top of atmosphere based on ISCCP and other global data sets: Refinements of the radiative transfer model and the input data , 2004 .

[50]  H. Niino,et al.  An Improved Mellor–Yamada Level-3 Model with Condensation Physics: Its Design and Verification , 2004 .

[51]  Akimasa Sumi,et al.  Far‐reaching effects of the Hawaiian Islands in the CCSR/NIES/FRCGC high‐resolution climate model , 2004 .

[52]  Ronald J. Stouffer,et al.  A method for obtaining pre-twentieth century initial conditions for use in climate change studies , 2004 .

[53]  Hirofumi Tomita,et al.  A new dynamical framework of nonhydrostatic global model using the icosahedral grid , 2004 .

[54]  Shian‐Jiann Lin A “Vertically Lagrangian” Finite-Volume Dynamical Core for Global Models , 2004 .

[55]  Ranga B. Myneni,et al.  Analysis and optimization of the MODIS leaf area index algorithm retrievals over broadleaf forests , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[56]  Jonathan L. Bamber,et al.  A surface mass balance model for the Greenland Ice Sheet , 2005 .

[57]  Y. Noh,et al.  Effect of the Prandtl number in the parameterization of vertical mixing in an OGCM of the tropical Pacific , 2005 .

[58]  S. Emori,et al.  Validation, parameterization dependence, and future projection of daily precipitation simulated with a high‐resolution atmospheric GCM , 2005 .

[59]  A. Sterl,et al.  The ERA‐40 re‐analysis , 2005 .

[60]  S. Emori,et al.  Simulation of climate response to aerosol direct and indirect effects with aerosol transport‐radiation model , 2005 .

[61]  S. Bony,et al.  Marine boundary layer clouds at the heart of tropical cloud feedback uncertainties in climate models , 2005 .

[62]  Greg Kopp,et al.  SORCE Contributions to New Understanding of Global Change and Solar Variability , 2005 .

[63]  E. O. Hulburt,et al.  SORCE CONTRIBUTIONS TO NEW UNDERSTANDING OF GLOBAL CHANGE AND SOLAR VARIABILITY , 2005 .

[64]  Masayoshi Ishii,et al.  Steric sea level changes estimated from historical ocean subsurface temperature and salinity analyses , 2006 .

[65]  Jun Yoshimura,et al.  Tropical Cyclone Climatology in a Global-Warming Climate as Simulated in a 20 km-Mesh Global Atmospheric Model: Frequency and Wind Intensity Analyses , 2006 .

[66]  K. Sugiura,et al.  Atmospheric Aerosol Deposition on Snow Surfaces and Its Effect on Albedo , 2006 .

[67]  Kevin E. Trenberth,et al.  Atlantic hurricanes and natural variability in 2005 , 2006 .

[68]  Yoko Tsushima,et al.  Importance of the mixed-phase cloud distribution in the control climate for assessing the response of clouds to carbon dioxide increase: a multi-model study , 2006 .

[69]  Thomas Jung,et al.  Sensitivity of extratropical cyclone characteristics to horizontal resolution in the ECMWF model , 2006 .

[70]  A. Bouwman,et al.  Mapping contemporary global cropland and grassland distributions on a 5 × 5 minute resolution , 2007 .

[71]  Dong L. Wu,et al.  Cloud ice: A climate model challenge with signs and expectations of progress , 2007 .

[72]  John F. B. Mitchell,et al.  THE WCRP CMIP3 Multimodel Dataset: A New Era in Climate Change Research , 2007 .

[73]  P. Huybrechts The Greenland ice sheet , 2008 .

[74]  Teruyuki Nakajima,et al.  A k-distribution-based radiation code and its computational optimization for an atmospheric general circulation model , 2008 .

[75]  J. Carton,et al.  A Reanalysis of Ocean Climate Using Simple Ocean Data Assimilation (SODA) , 2008 .

[76]  T. Reichler,et al.  How Well Do Coupled Models Simulate Today's Climate? , 2008 .

[77]  M. Webb,et al.  Towards Understanding Cloud Response in Atmospheric GCMs : The Use of Tendency Diagnostics , 2008 .

[78]  Reto Knutti,et al.  The equilibrium sensitivity of the Earth's temperature to radiation changes , 2008 .

[79]  S. Emori,et al.  Development of an Atmospheric General Circulation Model for Integrated Earth System Modeling on the Earth Simulator , 2008 .

[80]  E. Guilyardi,et al.  UNDERSTANDING EL NINO IN OCEAN-ATMOSPHERE GENERAL CIRCULATION MODELS : Progress and Challenges , 2008 .

[81]  S. Xie,et al.  On the origin of equatorial Atlantic biases in coupled general circulation models , 2008 .

[82]  B. Santer,et al.  Incorporating model quality information in climate change detection and attribution studies , 2009, Proceedings of the National Academy of Sciences.

[83]  Simon Wilson,et al.  U.K. HiGEM: The New U.K. High-Resolution Global Environment Model― Model Description and Basic Evaluation , 2009 .

[84]  A PDF-based hybrid prognostic cloud scheme for general circulation models , 2009 .

[85]  S. Frolking,et al.  Harmonisation of global land-use scenarios for the period 1500–2100 for IPCC-AR5 , 2009 .

[86]  E. Guilyardi,et al.  Atmosphere Feedbacks during ENSO in a Coupled GCM with a Modified Atmospheric Convection Scheme , 2009 .

[87]  Patrick T. Haertel,et al.  Convectively coupled equatorial waves , 2009 .

[88]  P. Williams A Proposed Modification to the Robert–Asselin Time Filter* , 2009 .

[89]  C. Bretherton,et al.  Response of a Subtropical Stratocumulus-Capped Mixed Layer to Climate and Aerosol Changes , 2009 .

[90]  Toshihiko Takemura,et al.  A simulation of the global distribution and radiative forcing of soil dust aerosols at the Last Glacial Maximum , 2009 .

[91]  David R. Doelling,et al.  Toward Optimal Closure of the Earth's Top-of-Atmosphere Radiation Budget , 2009 .

[92]  Taikan Oki,et al.  Deriving a global river network map and its sub-grid topographic characteristics from a fine-resolution flow direction map , 2009 .

[93]  Masahiro Sugiyama,et al.  A Cumulus Parameterization with State-Dependent Entrainment Rate. Part I: Description and Sensitivity to Temperature and Humidity Profiles , 2010 .

[94]  M. Chikira A Cumulus Parameterization with State-Dependent Entrainment Rate. Part II: Impact on Climatology in a General Circulation Model , 2010 .

[95]  R. Neale,et al.  Improvements in a half degree atmosphere/land version of the CCSM , 2010 .

[96]  Hajime Okamoto,et al.  Global analysis of cloud phase and ice crystal orientation from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) data using attenuated backscattering and depolarization ratio , 2010 .

[97]  M. Webb,et al.  Structural similarities and differences in climate responses to CO2 increase between two perturbed physics ensembles. , 2010 .

[98]  M. Kimoto,et al.  Convective Control of ENSO Simulated in MIROC , 2011 .