Massively parallel Monte Carlo for many-particle simulations on GPUs

Current trends in parallel processors call for the design of efficient massively parallel algorithms for scientific computing. Parallel algorithms for Monte Carlo simulations of thermodynamic ensembles of particles have received little attention because of the inherent serial nature of the statistical sampling. In this paper, we present a massively parallel method that obeys detailed balance and implement it for a system of hard disks on the GPU. We reproduce results of serial high-precision Monte Carlo runs to verify the method. This is a good test case because the hard disk equation of state over the range where the liquid transforms into the solid is particularly sensitive to small deviations away from the balance conditions. On a Tesla K20, our GPU implementation executes over one billion trial moves per second, which is 148 times faster than on a single Intel Xeon E5540 CPU core, enables 27 times better performance per dollar, and cuts energy usage by a factor of 13. With this improved performance we are able to calculate the equation of state for systems of up to one million hard disks. These large system sizes are required in order to probe the nature of the melting transition, which has been debated for the last forty years. In this paper we present the details of our computational method, and discuss the thermodynamics of hard disks separately in a companion paper.

[1]  Zongfu Yu,et al.  Measurement of time-dependent CP asymmetries in Bjavax.xml.bind.JAXBElement@6d610b0 → D(*)±π± decays and constraints on sin(2β + γ) , 2004 .

[2]  Esselink,et al.  Parallel Monte Carlo simulations. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[3]  Klaus Schulten,et al.  GPU-accelerated molecular modeling coming of age. , 2010, Journal of molecular graphics & modelling.

[4]  Erik Luijten,et al.  Rejection-free geometric cluster algorithm for complex fluids. , 2004, Physical review letters.

[5]  Vijay S. Pande,et al.  Efficient nonbonded interactions for molecular dynamics on a graphics processing unit , 2010, J. Comput. Chem..

[6]  Jack J. Purdum,et al.  C programming guide , 1983 .

[7]  Michael W. Deem,et al.  Strict detailed balance is unnecessary in Monte Carlo simulation , 1999 .

[8]  D. J. Wallace,et al.  Concurrency and parallelism in MC and MD simulations in physics , 1985 .

[9]  Peng Wang,et al.  Implementing molecular dynamics on hybrid high performance computers - short range forces , 2011, Comput. Phys. Commun..

[10]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[11]  C H Mak Large-scale simulations of the two-dimensional melting of hard disks. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[12]  S. Whitelam,et al.  Avoiding unphysical kinetic traps in Monte Carlo simulations of strongly attractive particles. , 2005, The Journal of chemical physics.

[13]  Boris D. Lubachevsky,et al.  Efficient Parallel Simulations of Asynchronous Cellular Arrays , 2005, Complex Syst..

[14]  Grant Heffelfinger,et al.  A comparison between two massively parallel algorithms for Monte Carlo computer simulation: An investigation in the grand canonical ensemble , 1996, J. Comput. Chem..

[15]  B. Alder,et al.  Phase Transition in Elastic Disks , 1962 .

[16]  Grant S. Heffelfinger,et al.  A comparison between two massively parallel algorithms for Monte Carlo computer simulation: An investigation in the grand canonical ensemble , 1996 .

[17]  Sharon C. Glotzer,et al.  Pseudo-random number generation for Brownian Dynamics and Dissipative Particle Dynamics simulations on GPU devices , 2011, J. Comput. Phys..

[18]  Alfredo Caro,et al.  Scalable parallel Monte Carlo algorithm for atomistic simulations of precipitation in alloys , 2010, 1012.5082.

[19]  Vlasis G. Mavrantzas,et al.  Large scale atomistic polymer simulations using Monte Carlo methods for parallel vector processors , 2002 .

[20]  Wang,et al.  Nonuniversal critical dynamics in Monte Carlo simulations. , 1987, Physical review letters.

[21]  И.В. Булдашев,et al.  Определение коэффициента самодиффузии воды в пакете Gromacs , 2011 .

[22]  Claudia Felser,et al.  Symmetry of valence states of Heusler compounds explored by linear dichroism in hard-x-ray photoelectron spectroscopy. , 2011, Physical review letters.

[23]  Ruichao Ren,et al.  Parallel Markov chain Monte Carlo simulations. , 2007, The Journal of chemical physics.

[24]  Lee,et al.  First-order melting transition of the hard-disk system. , 1992, Physical review. B, Condensed matter.

[25]  M. A. Novotny,et al.  Parallelization of a Dynamic Monte Carlo Algorithm: a Partially Rejection-Free Conservative Approach , 1998, ArXiv.

[26]  Michela Taufer,et al.  Structural, dynamic, and electrostatic properties of fully hydrated DMPC bilayers from molecular dynamics simulations accelerated with graphical processing units (GPUs) , 2011, J. Comput. Chem..

[27]  Duncan Poole,et al.  Routine Microsecond Molecular Dynamics Simulations with AMBER on GPUs. 1. Generalized Born , 2012, Journal of chemical theory and computation.

[28]  Felix Höfling,et al.  Highly accelerated simulations of glassy dynamics using GPUs: Caveats on limited floating-point precision , 2009, Comput. Phys. Commun..

[29]  Sharon C Glotzer,et al.  Hard-disk equation of state: first-order liquid-hexatic transition in two dimensions with three simulation methods. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[30]  Weber,et al.  Melting transition in two dimensions: A finite-size scaling analysis of bond-orientational order in hard disks. , 1995, Physical review. B, Condensed matter.

[31]  Wolfgang Paul,et al.  GPU accelerated Monte Carlo simulation of the 2D and 3D Ising model , 2009, J. Comput. Phys..

[32]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[33]  Petr Plechác,et al.  Hierarchical fractional-step approximations and parallel kinetic Monte Carlo algorithms , 2011, J. Comput. Phys..

[34]  Samuel Williams,et al.  The Landscape of Parallel Computing Research: A View from Berkeley , 2006 .

[35]  Klaus Schulten,et al.  Accelerating Molecular Modeling Applications with GPU Computing , 2009 .

[36]  G. Orkoulas,et al.  Parallel canonical Monte Carlo simulations through sequential updating of particles. , 2009, The Journal of chemical physics.

[37]  Werner Krauth,et al.  Two-step melting in two dimensions: first-order liquid-hexatic transition. , 2011, Physical review letters.

[38]  Enrique Martínez,et al.  Synchronous parallel kinetic Monte Carlo for continuum diffusion-reaction systems , 2008, J. Comput. Phys..

[39]  Andreas W. Götz,et al.  SPFP: Speed without compromise - A mixed precision model for GPU accelerated molecular dynamics simulations , 2013, Comput. Phys. Commun..

[40]  Guy Cohen,et al.  Simulating lattice spin models on GPUs , 2014 .

[41]  Werner Krauth,et al.  Event-chain Monte Carlo algorithms for hard-sphere systems. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[42]  Andreas Jaster Computer simulations of the two-dimensional melting transition using hard disks , 1999 .

[43]  Robert M. Farber,et al.  CUDA Application Design and Development , 2011 .

[44]  David J. Goodman,et al.  Personal Communications , 1994, Mobile Communications.

[45]  Jie Cheng,et al.  Programming Massively Parallel Processors. A Hands-on Approach , 2010, Scalable Comput. Pract. Exp..

[46]  G. Chester,et al.  Melting in two dimensions. , 1992, Physical review. B, Condensed matter.

[47]  Jun Li,et al.  Superconductivity suppression of Ba0.5K0.5Fe2−2xM2xAs2 single crystals by substitution of transition metal (M = Mn, Ru, Co, Ni, Cu, and Zn) , 2012, 1206.0811.

[48]  R. Jayanth,et al.  たんぱく質の幾何:水素結合,立体構造および周辺コンパクトチューブ , 2006 .

[49]  B. Smit,et al.  Parallel Gibbs-ensemble simulations , 1995 .

[50]  Joshua A. Anderson,et al.  General purpose molecular dynamics simulations fully implemented on graphics processing units , 2008, J. Comput. Phys..

[51]  D. C. Rapaport,et al.  Enhanced molecular dynamics performance with a programmable graphics processor , 2009, Comput. Phys. Commun..

[52]  Ruichao Ren,et al.  Acceleration of Markov chain Monte Carlo simulations through sequential updating. , 2006, The Journal of chemical physics.