Particle filtering for chaotic dynamical systems using future right-singular vectors

[1]  E. Kalnay,et al.  Lyapunov, singular and bred vectors in a multi-scale system: an empirical exploration of vectors related to instabilities , 2013 .

[2]  Neil J. Gordon,et al.  A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..

[3]  N Sri Namachchivaya,et al.  Particle filtering in high-dimensional chaotic systems. , 2012, Chaos.

[4]  L. Arnold Random Dynamical Systems , 2003 .

[5]  Ulrich Parlitz,et al.  Theory and Computation of Covariant Lyapunov Vectors , 2011, Journal of Nonlinear Science.

[6]  Xuemin Tu,et al.  Projected Shadowing-Based Data Assimilation , 2017, SIAM J. Appl. Dyn. Syst..

[7]  A. Carrassi,et al.  Four-dimensional ensemble variational data assimilation and the unstable subspace , 2017 .

[8]  Jun S. Liu,et al.  Sequential Monte Carlo methods for dynamic systems , 1997 .

[9]  Alberto Carrassi,et al.  Lyapunov vectors and assimilation in the unstable subspace: theory and applications , 2013 .

[10]  G. Benettin,et al.  Lyapunov Characteristic Exponents for smooth dynamical systems and for hamiltonian systems; a method for computing all of them. Part 1: Theory , 1980 .

[11]  N. Namachchivaya,et al.  Optimal nudging in particle filters , 2014 .

[12]  Olivier Talagrand,et al.  Four‐dimensional variational assimilation in the unstable subspace and the optimal subspace dimension , 2010 .

[13]  Matthias Morzfeld,et al.  Implicit particle filters for data assimilation , 2010, 1005.4002.

[14]  E. Lorenz Predictability of Weather and Climate: Predictability – a problem partly solved , 2006 .

[15]  P. Bickel,et al.  Obstacles to High-Dimensional Particle Filtering , 2008 .

[16]  David Ruelle,et al.  An inequality for the entropy of differentiable maps , 1978 .

[17]  Niclas Bergman,et al.  Recursive Bayesian Estimation : Navigation and Tracking Applications , 1999 .

[18]  Antonio Politi,et al.  Covariant Lyapunov vectors , 2012, 1212.3961.

[19]  R. Samelson,et al.  An efficient method for recovering Lyapunov vectors from singular vectors , 2007 .

[20]  T. Bengtsson,et al.  Performance Bounds for Particle Filters Using the Optimal Proposal , 2015 .

[21]  Eugenia Kalnay,et al.  Ensemble Forecasting at NMC: The Generation of Perturbations , 1993 .

[22]  Karthik S. Gurumoorthy,et al.  Degenerate Kalman Filter Error Covariances and Their Convergence onto the Unstable Subspace , 2016, SIAM/ASA J. Uncertain. Quantification.

[23]  N. Gordon,et al.  Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .

[24]  P. Leeuwen,et al.  Nonlinear data assimilation in geosciences: an extremely efficient particle filter , 2010 .

[25]  Istvan Szunyogh,et al.  A local ensemble Kalman filter for atmospheric data assimilation , 2004 .

[26]  Roland Potthast,et al.  Particle filters for applications in geosciences , 2018, 1807.10434.

[27]  L. Young Mathematical theory of Lyapunov exponents , 2013 .

[28]  Andrew J. Majda,et al.  Information theory and stochastics for multiscale nonlinear systems , 2005 .

[29]  J. Poterjoy A Localized Particle Filter for High-Dimensional Nonlinear Systems , 2016 .

[30]  Lai-Sang Young,et al.  Entropy formula for random transformations , 1988 .

[31]  Ryne Beeson,et al.  Reduced Order Nonlinear Filters for Multi-Scale Systems with Correlated Sensor Noise , 2018, 2018 21st International Conference on Information Fusion (FUSION).

[32]  Simon J. Godsill,et al.  On sequential simulation-based methods for Bayesian filtering , 1998 .

[33]  J. Yorke,et al.  The liapunov dimension of strange attractors , 1983 .

[34]  F. Ledrappier,et al.  The metric entropy of diffeomorphisms , 1984 .

[35]  P. Moral,et al.  Branching and interacting particle systems. Approximations of Feynman-Kac formulae with applications to non-linear filtering , 2000 .

[36]  G. Evensen,et al.  Data assimilation in the geosciences: An overview of methods, issues, and perspectives , 2017, WIREs Climate Change.

[37]  Luigi Palatella,et al.  Nonlinear Processes in Geophysics On the Kalman Filter error covariance collapse into the unstable subspace , 2011 .

[38]  Y. Pesin CHARACTERISTIC LYAPUNOV EXPONENTS AND SMOOTH ERGODIC THEORY , 1977 .

[39]  Roland Potthast,et al.  A Localized Adaptive Particle Filter within an Operational NWP Framework , 2019, Monthly Weather Review.

[40]  A. Deluca,et al.  Scientific challenges of convective-scale numerical weather prediction , 2017 .

[41]  Ryne Beeson,et al.  Particle Filters with Nudging in Multiscale Chaotic Systems: With Application to the Lorenz ’96 Atmospheric Model , 2020, Journal of Nonlinear Science.