A new method for identification of pre-microRNAs based on hybrid features

[1]  Xiaolong Wang,et al.  iMiRNA-PseDPC: microRNA precursor identification with a pseudo distance-pair composition approach , 2016, Journal of biomolecular structure & dynamics.

[2]  C. Burge,et al.  The microRNAs of Caenorhabditis elegans. , 2003, Genes & development.

[3]  Daniel H. Huson,et al.  Identification of plant microRNA homologs , 2006, Bioinform..

[4]  Chih-Jen Lin,et al.  LIBSVM: A library for support vector machines , 2011, TIST.

[5]  L. Patthy,et al.  Detecting homology of distantly related proteins with consensus sequences. , 1987, Journal of molecular biology.

[6]  Vasile Palade,et al.  microPred: effective classification of pre-miRNAs for human miRNA gene prediction , 2009, Bioinform..

[7]  K. Chou Some remarks on protein attribute prediction and pseudo amino acid composition , 2010, Journal of Theoretical Biology.

[8]  Terry Gaasterland,et al.  Prediction and identification of Arabidopsis thaliana microRNAs and their mRNA targets , 2004, Genome Biology.

[9]  Michel J. Weber New human and mouse microRNA genes found by homology search , 2004, The FEBS journal.

[10]  Zu-Guo Yu,et al.  Modeling and simulation of the horizontal component of the geomagnetic field by fractional stochastic differential equations in conjunction with empirical mode decomposition , 2010 .

[11]  K. Chou A novel approach to predicting protein structural classes in a (20–1)‐D amino acid composition space , 1995, Proteins.

[12]  Thomas G. Dietterich,et al.  Learning with Many Irrelevant Features , 1991, AAAI.

[13]  D. Bartel MicroRNAs Genomics, Biogenesis, Mechanism, and Function , 2004, Cell.

[14]  Daniel Gautheret,et al.  Profile-based detection of microRNA precursors in animal genomes , 2005, Bioinform..

[15]  D. Bartel,et al.  Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. , 2004, Molecular cell.

[16]  Nello Cristianini,et al.  An introduction to Support Vector Machines , 2000 .

[17]  Xiaolong Wang,et al.  miRNA-dis: microRNA precursor identification based on distance structure status pairs. , 2015, Molecular bioSystems.

[18]  Fuhui Long,et al.  Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy , 2003, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[19]  Ruichu Cai,et al.  BASSUM: A Bayesian semi-supervised method for classification feature selection , 2011, Pattern Recognit..

[20]  Dirk Walther,et al.  Identification and classification of ncRNA molecules using graph properties , 2009, Nucleic acids research.

[21]  Zhengwei Zhu,et al.  CD-HIT: accelerated for clustering the next-generation sequencing data , 2012, Bioinform..

[22]  Fei Li,et al.  MicroRNA identification based on sequence and structure alignment , 2005, Bioinform..

[23]  Ana Kozomara,et al.  miRBase: integrating microRNA annotation and deep-sequencing data , 2010, Nucleic Acids Res..

[24]  Alexander Schliep,et al.  The discriminant power of RNA features for pre-miRNA recognition , 2013, BMC Bioinformatics.

[25]  T. Schlick,et al.  RAG: RNA-As-Graphs database—concepts, analysis, and features , 1987 .

[26]  Ron Kohavi,et al.  Irrelevant Features and the Subset Selection Problem , 1994, ICML.

[27]  Yu-Chu Tian,et al.  An Ensemble Method for Predicting Subnuclear Localizations from Primary Protein Structures , 2013, PloS one.

[28]  C. Burge,et al.  Patterns of flanking sequence conservation and a characteristic upstream motif for microRNA gene identification. , 2004, RNA.

[29]  Mingzhi Liao,et al.  Predicting human microRNA precursors based on an optimized feature subset generated by GA-SVM. , 2011, Genomics.

[30]  Swetlana Nikolajewa,et al.  DiProDB: a database for dinucleotide properties , 2008, Nucleic Acids Res..

[31]  Fei Li,et al.  Classification of real and pseudo microRNA precursors using local structure-sequence features and support vector machine , 2005, BMC Bioinformatics.

[32]  Peng Jiang,et al.  MiPred: classification of real and pseudo microRNA precursors using random forest prediction model with combined features , 2007, Nucleic Acids Res..

[33]  A. Adai,et al.  Computational prediction of miRNAs in Arabidopsis thaliana. , 2005, Genome research.

[34]  Saima Jabeen,et al.  Identification of microRNA precursors using reduced and hybrid features. , 2017, Molecular bioSystems.

[35]  D. Gautheret,et al.  Direct RNA motif definition and identification from multiple sequence alignments using secondary structure profiles. , 2001, Journal of molecular biology.

[36]  Ana Kozomara,et al.  miRBase: annotating high confidence microRNAs using deep sequencing data , 2013, Nucleic Acids Res..

[37]  G. Rubin,et al.  Computational identification of Drosophila microRNA genes , 2003, Genome Biology.

[38]  Santosh K. Mishra,et al.  De novo SVM classification of precursor microRNAs from genomic pseudo hairpins using global and intrinsic folding measures , 2007, Bioinform..

[39]  Byoung-Tak Zhang,et al.  Human microRNA prediction through a probabilistic co-learning model of sequence and structure , 2005, Nucleic acids research.

[40]  K. Lindblad-Toh,et al.  Systematic discovery of regulatory motifs in human promoters and 3′ UTRs by comparison of several mammals , 2005, Nature.

[41]  Jianyi Yang,et al.  Improving taxonomy‐based protein fold recognition by using global and local features , 2011, Proteins.

[42]  Namhee Kim,et al.  RAG: RNA-As-Graphs web resource , 2004, BMC Bioinformatics.

[43]  H. Grosshans,et al.  Active turnover modulates mature microRNA activity in Caenorhabditis elegans , 2009, Nature.

[44]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[45]  B. Liu,et al.  Identification of Real MicroRNA Precursors with a Pseudo Structure Status Composition Approach , 2015, PloS one.

[46]  Shuigeng Zhou,et al.  MiRenSVM: towards better prediction of microRNA precursors using an ensemble SVM classifier with multi-loop features , 2010, BMC Bioinformatics.

[47]  K. Chou,et al.  Prediction of linear B-cell epitopes using amino acid pair antigenicity scale , 2007, Amino Acids.

[48]  N. Huang,et al.  The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis , 1998, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[49]  K. Chou,et al.  Analysis and Prediction of the Metabolic Stability of Proteins Based on Their Sequential Features, Subcellular Locations and Interaction Networks , 2010, PloS one.

[50]  Jens Allmer,et al.  MicroRNA categorization using sequence motifs and k-mers , 2017, BMC Bioinformatics.

[51]  B. Liu,et al.  Identification of microRNA precursor with the degenerate K-tuple or Kmer strategy. , 2015, Journal of theoretical biology.

[52]  Ying-Li Chen,et al.  Prediction of apoptosis protein subcellular location using improved hybrid approach and pseudo-amino acid composition. , 2007, Journal of theoretical biology.