A parallel generalized conjugate gradient method for large scale eigenvalue problems

Based on damping blocked inverse power method, a type of generalized parallel conjugate gradient method is proposed for large scale eigenvalue problems. Techniques for orthogonalization and computing Rayleigh-Ritz problems are introduced to improve the stability, efficiency and scalability. Furthermore, a computing package is built based on the proposed method here. Some numerical tests are provided to validate the stability, efficiency and scalability of the method in this paper. The corresponding computing package can be downloaded from the web site:   https://github.com/pase2017/GCGE-1.0 .

[1]  Vicente Hernández,et al.  SLEPc: A scalable and flexible toolkit for the solution of eigenvalue problems , 2005, TOMS.

[2]  William Gropp,et al.  Efficient Management of Parallelism in Object-Oriented Numerical Software Libraries , 1997, SciTools.

[3]  Merico E. Argentati,et al.  Block Locally Optimal Preconditioned Eigenvalue Xolvers (BLOPEX) in hypre and PETSc , 2007, SIAM J. Sci. Comput..

[4]  Zhang,et al.  A Parallel Algorithm for Adaptive Local Refinement of Tetrahedral Meshes Using Bisection , 2009 .

[5]  Ming Gu,et al.  A Robust and Efficient Implementation of LOBPCG , 2018, SIAM J. Sci. Comput..

[6]  Richard B. Lehoucq,et al.  Basis selection in LOBPCG , 2006, J. Comput. Phys..

[7]  A. Knyazev,et al.  Efficient solution of symmetric eigenvalue problems using multigridpreconditioners in the locally optimal block conjugate gradient method , 2001 .

[8]  Kesheng Wu,et al.  A Block Orthogonalization Procedure with Constant Synchronization Requirements , 2000, SIAM J. Sci. Comput..

[9]  Y. Saad Numerical Methods for Large Eigenvalue Problems , 2011 .

[10]  Y. Saad,et al.  Numerical Methods for Large Eigenvalue Problems , 2011 .

[11]  Andrew V. Knyazev,et al.  Toward the Optimal Preconditioned Eigensolver: Locally Optimal Block Preconditioned Conjugate Gradient Method , 2001, SIAM J. Sci. Comput..

[12]  Yin Zhang,et al.  Accelerating Convergence by Augmented Rayleigh-Ritz Projections For Large-Scale Eigenpair Computation , 2017, SIAM J. Matrix Anal. Appl..