Flexible polyimide-based hybrid opto-electric neural interface with 16 channels of micro-LEDs and electrodes

[1]  Vikash Gilja,et al.  Scaling Effects on the Electrochemical Performance of poly(3,4‐ethylenedioxythiophene (PEDOT), Au, and Pt for Electrocorticography Recording , 2017 .

[2]  Chengkuo Lee,et al.  Toward Bioelectronic Medicine—Neuromodulation of Small Peripheral Nerves Using Flexible Neural Clip , 2017, Advanced science.

[3]  O. Paul,et al.  Compact intracerebral probe with yellow phosphor-based light conversion for optogenetic control , 2017, 2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS).

[4]  Sang Heon Lee,et al.  Flexible inorganic light emitting diodes and transparent PEDOT:PSS/Parylene C for simultaneous optogenetics and electrocorticography (Conference Presentation) , 2017, BiOS.

[5]  Qiongfeng Shi,et al.  Development of battery-free neural interface and modulated control of tibialis anterior muscle via common peroneal nerve based on triboelectric nanogenerators (TENGs) , 2017 .

[6]  Xiaoyang Kang,et al.  Flexible Optoelectric Neural Interface Integrated Wire-Bonding $\mu$ LEDs and Microelectrocorticography for Optogenetics , 2017, IEEE Transactions on Electron Devices.

[7]  Zhuolin Xiang,et al.  A flexible three-dimensional electrode mesh: An enabling technology for wireless brain–computer interface prostheses , 2016, Microsystems & Nanoengineering.

[8]  Azadeh Yazdan-Shahmorad,et al.  A Large-Scale Interface for Optogenetic Stimulation and Recording in Nonhuman Primates , 2016, Neuron.

[9]  Se-Bum Paik,et al.  Optogenetic Mapping of Functional Connectivity in Freely Moving Mice via Insertable Wrapping Electrode Array Beneath the Skull. , 2016, ACS nano.

[10]  P. N. Sabes,et al.  Strategies for optical control and simultaneous electrical readout of extended cortical circuits , 2015, Journal of Neuroscience Methods.

[11]  John A Rogers,et al.  Soft, stretchable, fully implantable miniaturized optoelectronic systems for wireless optogenetics , 2015, Nature Biotechnology.

[12]  I. Ozden,et al.  Transparent intracortical microprobe array for simultaneous spatiotemporal optical stimulation and multichannel electrical recording , 2015, Nature Methods.

[13]  John A Rogers,et al.  Ultraminiaturized photovoltaic and radio frequency powered optoelectronic systems for wireless optogenetics , 2015, Journal of neural engineering.

[14]  M. Fukushima,et al.  Studying brain functions with mesoscopic measurements: Advances in electrocorticography for non-human primates , 2015, Current Opinion in Neurobiology.

[15]  Alexander Lex,et al.  Response to "Plotting intersections" by Lentini , 2015, Nature Methods.

[16]  Jared P. Ness,et al.  Graphene-based carbon-layered electrode array technology for neural imaging and optogenetic applications , 2014, Nature Communications.

[17]  O. Paul,et al.  GaN-based micro-LED arrays on flexible substrates for optical cochlear implants , 2014 .

[18]  Thomas J. Richner,et al.  Optogenetic micro-electrocorticography for modulating and localizing cerebral cortex activity , 2014, Journal of neural engineering.

[19]  Wen Li,et al.  Opto-μECoG Array: A Hybrid Neural Interface With Transparent μECoG Electrode Array and Integrated LEDs for Optogenetics , 2013, IEEE Transactions on Biomedical Circuits and Systems.

[20]  Anna W Roe,et al.  Optogenetics through windows on the brain in the nonhuman primate. , 2013, Journal of neurophysiology.

[21]  Yei Hwan Jung,et al.  Injectable, Cellular-Scale Optoelectronics with Applications for Wireless Optogenetics , 2013, Science.

[22]  Alexander D. Rush,et al.  Miniaturized LED sources for in vivo optogenetic experimentation , 2013, Photonics West - Biomedical Optics.

[23]  Edward S Boyden,et al.  Three-dimensional multiwaveguide probe array for light delivery to distributed brain circuits. , 2012, Optics letters.

[24]  Ki Yong Kwon,et al.  Opto-μECoG array: Transparent μECoG electrode array and integrated LEDs for optogenetics , 2012, 2012 IEEE Biomedical Circuits and Systems Conference (BioCAS).

[25]  Garret D Stuber,et al.  Construction of implantable optical fibers for long-term optogenetic manipulation of neural circuits , 2011, Nature Protocols.

[26]  G. Schalk,et al.  Brain-Computer Interfaces Using Electrocorticographic Signals , 2011, IEEE Reviews in Biomedical Engineering.

[27]  Justin A. Blanco,et al.  Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics. , 2010, Nature materials.

[28]  L. Miller,et al.  Optimal spacing of surface electrode arrays for brain–machine interface applications , 2010, Journal of neural engineering.

[29]  K. Deisseroth,et al.  Neural substrates of awakening probed with optogenetic control of hypocretin neurons , 2007, Nature.

[30]  Feng Zhang,et al.  Multimodal fast optical interrogation of neural circuitry , 2007, Nature.

[31]  K. Deisseroth,et al.  Millisecond-timescale, genetically targeted optical control of neural activity , 2005, Nature Neuroscience.

[32]  Gerwin Schalk,et al.  A brain–computer interface using electrocorticographic signals in humans , 2004, Journal of neural engineering.

[33]  A. Lyons,et al.  Gold wire bonding onto flexible polymeric substrates , 1995, 1995 Proceedings. 45th Electronic Components and Technology Conference.

[34]  Tae Mok Gwon,et al.  High Charge Storage Capacity Electrodeposited Iridium Oxide Film on Liquid Crystal Polymer -Based Neural Electrodes , 2018 .

[35]  Jingquan Liu,et al.  Photoelectric neural interface combining wire-bonding μleds with iridium oxide microelectrodes for optogenetics , 2017, 2017 IEEE 30th International Conference on Micro Electro Mechanical Systems (MEMS).

[36]  Shusuke Yoshimoto,et al.  Implantable wireless 64-channel system with flexible ECoG electrode and optogenetics probe , 2016, 2016 IEEE Biomedical Circuits and Systems Conference (BioCAS).

[37]  Patrick Ruther,et al.  An Intracerebral Probe with Integrated 10×1 μLED Array for Optogenetic Experiments at 460 nm , 2015 .

[38]  Jingquan Liu,et al.  Controlled activation of iridium film for AIROF microelectrodes , 2014 .

[39]  M. Langlois,et al.  Society of Photo-Optical Instrumentation Engineers , 2005 .