Temperature dependent volume expansion of microgel in nonequilibria

[1]  Jinben Wang,et al.  A temperature-responsive supramolecular hydrogel: preparation, gel-gel transition and molecular aggregation. , 2018, Soft matter.

[2]  S. Burov,et al.  Noisy oscillator: Random mass and random damping. , 2016, Physical review. E.

[3]  Gert Vriend,et al.  New ways to boost molecular dynamics simulations , 2015, J. Comput. Chem..

[4]  Dominique P Pioletti,et al.  Impact of synovial fluid flow on temperature regulation in knee cartilage. , 2015, Journal of biomechanics.

[5]  T. Śliwa,et al.  Dynamic Light Scattering Investigation of Pnipam-Co-Maa Microgel Solution , 2015 .

[6]  Tadeusz Wysocki,et al.  A novel method for simulating insulin mediated GLUT4 translocation , 2014, Biotechnology and bioengineering.

[7]  A. Gadomski,et al.  Thermodiffusion as a close-to-interface effect that matters in non-isothermal (dis)orderly protein aggregations , 2014 .

[8]  D. Lohse,et al.  Spatial organization of surface nanobubbles and its implications in their formation process. , 2014, Soft matter.

[9]  I. Santamaría-Holek,et al.  Mean-square displacement of particles in slightly interconnected polymer networks. , 2014, The journal of physical chemistry. B.

[10]  Wei Wang,et al.  Nano-structured smart hydrogels with rapid response and high elasticity , 2013, Nature Communications.

[11]  Guangzhao Zhang,et al.  Thermally Sensitive Microgels: From Basic Science to Applications , 2012 .

[12]  Gang Zhang,et al.  Colloquium : Phononics: Manipulating heat flow with electronic analogs and beyond , 2011, 1108.6120.

[13]  A. Oloyede,et al.  The relationship between friction and wettability in aqueous environment , 2011 .

[14]  A. Gadomski,et al.  Revealing sol–gel type main effects by exploring a molecular cluster behavior in model in-plane amphiphilic aggregations , 2010 .

[15]  A. Gadomski Comment on “How skew distributions emerge in evolving systems” by Choi M. Y. et al. , 2010 .

[16]  H. Bohidar,et al.  Universal growth of microdomains and gelation transition in agar hydrogels. , 2008, The journal of physical chemistry. B.

[17]  A. V. Popov,et al.  Ontology of temperature in nonequilibrium systems. , 2007, The Journal of chemical physics.

[18]  G. E. Nugent-Derfus,et al.  A model of synovial fluid lubricant composition in normal and injured joints. , 2007, European cells & materials.

[19]  K. Dawson,et al.  Systematic investigation of the thermodynamics of HSA adsorption to N-iso-propylacrylamide/N-tert-butylacrylamide copolymer nanoparticles. Effects of particle size and hydrophobicity. , 2007, Nano letters.

[20]  A. Gadomski,et al.  Thermokinetic approach of single particles and clusters involving anomalous diffusion under viscoelastic response. , 2007, The journal of physical chemistry. B.

[21]  J. Galy,et al.  Structure−Property Relationships in Organic−Inorganic Nanomaterials Based on Methacryl−POSS and Dimethacrylate Networks , 2006 .

[22]  Hideto Tsuji,et al.  Poly(lactide) stereocomplexes: formation, structure, properties, degradation, and applications. , 2005, Macromolecular bioscience.

[23]  A. Gadomski,et al.  On temperature- and space-dimension dependent matter agglomerations in a mature growing stage , 2004, cond-mat/0412282.

[24]  K. Dawson,et al.  Release of model compounds from "plum-pudding"-type gels composed of microgel particles randomly dispersed in a gel matrix , 2004 .

[25]  Wei Zhang,et al.  A point‐charge force field for molecular mechanics simulations of proteins based on condensed‐phase quantum mechanical calculations , 2003, J. Comput. Chem..

[26]  L. Schimansky-Geier,et al.  Phase transformation kinetics in d-dimensional grains-containing systems: diffusion-type model , 1998 .

[27]  A. Gadomski A critical discussion of the analytical approach to the normal grain growth of materials in a D-dimensional space with some possible extensions to other growth phenomena , 1994 .

[28]  W. Stockmayer Problems of the statistical thermodynamics of dilute polymer solutions , 1960 .