Polyadic codes of prime power length

Polyadic codes constitute a special class of cyclic codes and are generalizations of quadratic residue codes, duadic codes, triadic codes, m-adic residue codes and split group codes, which have good error-correcting properties. In this paper, we give necessary and sufficient conditions for the existence of polyadic codes of prime power length. Examples of some good codes arising from the family of polyadic codes of prime power length are also given.

[1]  Vanessa R. Job,et al.  M-adic residue codes , 1992, IEEE Trans. Inf. Theory.

[2]  M. Smid Duadic codes (Corresp.) , 1987 .

[3]  Madhu Raka,et al.  Cyclotomic numbers and primitive idempotents in the ring GF(q)[x]/(xpn-1) , 2004, Finite Fields Their Appl..

[4]  Cunsheng Ding,et al.  Split group codes , 2000, IEEE Trans. Inf. Theory.

[5]  Cunsheng Ding,et al.  Construction and Enumeration of All Binary Duadic Codes of Length pm , 1999, Fundam. Informaticae.

[6]  Cunsheng Ding,et al.  Cyclotomy and Duadic Codes of Prime Lengths , 1999, IEEE Trans. Inf. Theory.

[7]  Jacobus H. van Lint,et al.  Coding Theory , 1971 .

[8]  W. Cary Huffman,et al.  Fundamentals of Error-Correcting Codes , 1975 .

[9]  Richard A. Brualdi,et al.  Polyadic codes , 1989, Discret. Appl. Math..

[10]  Madhu Raka,et al.  Irreducible cyclic codes of length 2pn , 2007, Ars Comb..

[11]  Chaoping Xing,et al.  Polyadic codes revisited , 2004, IEEE Transactions on Information Theory.

[12]  Vera Pless,et al.  Duadic Codes , 1984, IEEE Trans. Inf. Theory.