Development of a three-stage, light-gas gun at the University of Dayton Research Institute

Abstract An elusive goal of the hypervelocity impact community has been the evaluation of the ballistic response of space hardware to impact velocities ranging from 8 to 11 km/s using projectiles with known properties. The design, development, and use, during the 1960s, of a three-stage, light-gas gun at McGill University is reviewed. The developers of this gun claim that they were able to launch cylindrical, 12.7-mm-diameter Lexan disks with masses of 1.5 and 1.1 g to velocities of 9.6 and 10.5 km/s, respectively. This paper presents the results of an internally funded program at the University of Dayton Research Institute (UDRI) to duplicate the published performance of the McGill University launcher. A support structure and various components of a third stage which used an 8.1-mm-diameter launch tube were added to the UDRI 75/30-mm, two-stage, light-gas gun, making the arrangement of the components similar to the one used by McGill University. Work on the development of the UDRI three-stage, light-gas gun is a continuing effort, with the goal of successfully launching small diameter (∼3 mm or less) aluminum spheres to velocities in excess of 9 km/s. To date, the highest projectile velocity achieved with the UDRI three-stage, light-gas gun has been 8.65 km/s.