High-throughput Block Turbo Decoding: From Full-parallel Architecture to FPGA Prototyping

Ultra high-speed block turbo decoder architectures meet the demand for even higher data rates and open up new opportunities for the next generations of communication systems such as fiber optic transmissions. This paper presents the implementation, onto an FPGA device of an ultra high throughput block turbo code decoder. An innovative architecture of a block turbo decoder which enables the memory blocks between all half-iterations to be removed is presented. A complexity analysis of the elementary decoder leads to a low complexity decoder architecture for a negligible performance degradation. The resulting turbo decoder is implemented on a Xilinx Virtex II-Pro FPGA in a communication experimental setup which also includes an innovative parallel product encoder. The implemented block turbo decoder processes input data at 600 Mb/s. The component code is an extended Bose, Ray-Chaudhuri, Hocquenghem (eBCH(16,11)) code. Some solutions to reach even higher data rates are finally presented.

[1]  Leilei Song,et al.  10- and 40-Gb/s forward error correction devices for optical communications , 2002 .

[2]  Robert G. Gallager,et al.  Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.

[3]  T. Mizuochi,et al.  Recent progress in forward error correction and its interplay with transmission impairments , 2006, IEEE Journal of Selected Topics in Quantum Electronics.

[4]  Hanho Lee A high-speed low-complexity Reed-Solomon decoder for optical communications , 2005, IEEE Trans. Circuits Syst. II Express Briefs.

[5]  Emilia Käsper,et al.  Turbo Codes , 2007 .

[6]  W. W. Peterson,et al.  Encoding and error-correction procedures for the Bose-Chaudhuri codes , 1960, IRE Trans. Inf. Theory.

[7]  O. Ait Sab,et al.  Block turbo code performances for long-haul DWDM optical transmission systems , 2000, Optical Fiber Communication Conference. Technical Digest Postconference Edition. Trends in Optics and Photonics Vol.37 (IEEE Cat. No. 00CH37079).

[8]  G. David Forney,et al.  On decoding BCH codes , 1965, IEEE Trans. Inf. Theory.

[9]  P. A. Wintz,et al.  Error Free Coding , 1973 .

[10]  James L. Massey,et al.  Shift-register synthesis and BCH decoding , 1969, IEEE Trans. Inf. Theory.

[11]  G. David Forney,et al.  Generalized minimum distance decoding , 1966, IEEE Trans. Inf. Theory.

[12]  Matthew Valenti,et al.  Turbo Codes , 2007 .

[13]  A. Glavieux,et al.  Near Shannon limit error-correcting coding and decoding: Turbo-codes. 1 , 1993, Proceedings of ICC '93 - IEEE International Conference on Communications.

[14]  Duncan H. Lawrie,et al.  Access and Alignment of Data in an Array Processor , 1975, IEEE Transactions on Computers.

[15]  K. Motoshima,et al.  A 3-bit soft-decision IC for powerful forward error correction in 10-Gb/s optical communication systems , 2005, IEEE Journal of Solid-State Circuits.

[16]  Ramesh Pyndiah,et al.  New architecture for high data rate turbo decoding of product codes , 2002, Global Telecommunications Conference, 2002. GLOBECOM '02. IEEE.

[17]  David Chase,et al.  Class of algorithms for decoding block codes with channel measurement information , 1972, IEEE Trans. Inf. Theory.

[18]  Jean-Luc Danger,et al.  Efficient FPGA implementation of Gaussian noise generator for communication channel emulation , 2000, ICECS 2000. 7th IEEE International Conference on Electronics, Circuits and Systems (Cat. No.00EX445).

[19]  Kamran Azadet,et al.  Equalization and FEC techniques for optical transceivers , 2002, IEEE J. Solid State Circuits.

[20]  Ramesh Pyndiah,et al.  Near optimum decoding of product codes , 1994, 1994 IEEE GLOBECOM. Communications: The Global Bridge.

[21]  Ramesh Pyndiah,et al.  Near-optimum decoding of product codes: block turbo codes , 1998, IEEE Trans. Commun..

[22]  Keshab K. Parhi,et al.  High speed VLSI architecture design for block turbo decoder , 2002, 2002 IEEE International Symposium on Circuits and Systems. Proceedings (Cat. No.02CH37353).

[23]  Christophe Jégo,et al.  Efficient architecture for Reed Solomon block turbo code , 2006, 2006 IEEE International Symposium on Circuits and Systems.