A FORMULATION OF GENERAL SHELL OF TENSORIAL COMPONENTSt ELEMENTS-THE USE OF MIXED INTERPOLATION

We briefly discuss the requirements on general shell elements for linear and nonlinear analysis in practical engineering environments, and present our approach to meet these needs. We summarize and give further insight into our formulation of a 4-node shell element using a mixed interpolation of tensorial components, and present a new 8-node element using this approach. Specific attention is given to the general applicability of the elements and their efficient use in practice.

[1]  E. Reissner On the Transverse Twisting of Shallow Spherical Ring Caps , 1980 .

[2]  K. Bathe,et al.  A four‐node plate bending element based on Mindlin/Reissner plate theory and a mixed interpolation , 1985 .

[3]  K. Park,et al.  A Curved C0 Shell Element Based on Assumed Natural-Coordinate Strains , 1986 .

[4]  Klaus-Jürgen Bathe,et al.  Some Results in the Analysis of Thin Shell Structures , 1981 .

[5]  Klaus-Jürgen Bathe,et al.  A geometric and material nonlinear plate and shell element , 1980 .

[6]  T. Hughes,et al.  Finite Elements Based Upon Mindlin Plate Theory With Particular Reference to the Four-Node Bilinear Isoparametric Element , 1981 .

[7]  E. Hinton,et al.  A nine node Lagrangian Mindlin plate element with enhanced shear interpolation , 1984 .

[8]  O. C. Zienkiewicz,et al.  Analysis of thick and thin shell structures by curved finite elements , 1970 .

[9]  M. Crisfield A quadratic mindlin element using shear constraints , 1984 .

[10]  K. Bathe,et al.  On the convergence of a four - node plate bending element based on Mindlin - Reissner plate theory a , 1985 .

[11]  K. Bathe,et al.  ON THE AUTOMATIC SOLUTION OF NONLINEAR FINITE ELEMENT EQUATIONS , 1983 .

[12]  Eduardo N. Dvorkin,et al.  Our discrete-Kirchhoff and isoparametric shell elements for nonlinear analysis—An assessment , 1983 .

[13]  S. BRODETSKY,et al.  Theory of Plates and Shells , 1941, Nature.

[14]  K. Bathe,et al.  A continuum mechanics based four‐node shell element for general non‐linear analysis , 1984 .

[15]  H. Saunders,et al.  Finite element procedures in engineering analysis , 1982 .

[16]  Theodore H. H. Pian,et al.  Basis of finite element methods for solid continua , 1969 .

[17]  Richard H. Macneal,et al.  Derivation of element stiffness matrices by assumed strain distributions , 1982 .

[18]  Theodore H. H. Pian,et al.  Theoretical Formulation of Finite-Element Methods in Linear-Elastic Analysis of General Shells∗ , 1972 .

[19]  T. Belytschko,et al.  Membrane Locking and Reduced Integration for Curved Elements , 1982 .

[20]  L. Morley Skew plates and structures , 1963 .

[21]  D. Talaslidis,et al.  A Simple and Efficient Approximation of Shells via Finite Quadrilateral Elements , 1982 .

[22]  W. Flügge Stresses in Shells , 1960 .