Initial results from the InSight mission on Mars

NASA’s InSight (Interior exploration using Seismic Investigations, Geodesy and Heat Transport) mission landed in Elysium Planitia on Mars on 26 November 2018. It aims to determine the interior structure, composition and thermal state of Mars, as well as constrain present-day seismicity and impact cratering rates. Such information is key to understanding the differentiation and subsequent thermal evolution of Mars, and thus the forces that shape the planet’s surface geology and volatile processes. Here we report an overview of the first ten months of geophysical observations by InSight. As of 30 September 2019, 174 seismic events have been recorded by the lander’s seismometer, including over 20 events of moment magnitude M w = 3–4. The detections thus far are consistent with tectonic origins, with no impact-induced seismicity yet observed, and indicate a seismically active planet. An assessment of these detections suggests that the frequency of global seismic events below approximately M w = 3 is similar to that of terrestrial intraplate seismic activity, but there are fewer larger quakes; no quakes exceeding M w = 4 have been observed. The lander’s other instruments—two cameras, atmospheric pressure, temperature and wind sensors, a magnetometer and a radiometer—have yielded much more than the intended supporting data for seismometer noise characterization: magnetic field measurements indicate a local magnetic field that is ten-times stronger than orbital estimates and meteorological measurements reveal a more dynamic atmosphere than expected, hosting baroclinic and gravity waves and convective vortices. With the mission due to last for an entire Martian year or longer, these results will be built on by further measurements by the InSight lander. Geophysical and meteorological measurements by NASA’s InSight lander on Mars reveal a planet that is seismically active and provide information about the interior, surface and atmospheric workings of Mars.

Jeroen Tromp | David Mimoun | Günter Kargl | Gareth S. Collins | Véronique Dehant | Simon C. Stähler | Ralph Lorenz | Christopher T. Russell | Matthew Fillingim | Tilman Spohn | Suzanne E. Smrekar | Justin N. Maki | John Clinton | Matthias Grott | Jerzy Grygorczuk | Paul Morgan | Martin Knapmeyer | Peter Chi | Clément Perrin | Domenico Giardini | Sharon Kedar | Raphaël F. Garcia | Philippe Lognonné | Ludovic Margerin | Nicholas Schmerr | Ana-Catalina Plesa | Mélanie Drilleau | Sami Asmar | Catherine L. Johnson | Scott M. McLennan | Brigitte Knapmeyer-Endrun | Naomi Murdoch | Caroline Beghein | Taichi Kawamura | Francis Nimmo | Aymeric Spiga | W. Thomas Pike | Ebru Bozdag | Don Banfield | Renee Weber | William Folkner | Mark Panning | Ingrid Daubar | Neil Bowles | Seiichi Nagihara | C. Russell | J. Tromp | M. Golombek | W. Folkner | M. Lemmon | J. Maki | D. Banfield | S. Asmar | J. Garvin | W. Banerdt | C. Johnson | D. Giardini | J. Clinton | S. McLennan | S. Smrekar | R. Lorenz | A. Spiga | M. Knapmeyer | R. Weber | V. Dehant | J. Grygorczuk | T. Spohn | N. Murdoch | G. Collins | G. Kargl | M. Grott | C. Newman | J. Rodriguez-Manfredi | D. Antonangeli | M. Panning | P. Lognonné | S. Kedar | B. Knapmeyer‐Endrun | A. Mocquet | N. Teanby | E. Bozdağ | M. Drilleau | A. Plesa | N. Schmerr | U. Christensen | D. Mimoun | M. Wieczorek | N. Bowles | S. Rodriguez | F. Nimmo | S. Stanley | W. Pike | N. Warner | I. Daubar | M. Fillingim | P. Chi | C. Perrin | L. Margerin | S. Nagihara | M. Siegler | S. King | C. Michaut | S. Stähler | N. Mueller | W. Bruce Banerdt | Matthew Golombek | Sabine Stanley | Jessica C. E. Irving | Nicholas Warner | P. Morgan | C. Russell | A. Mittelholz | T. Kawamura | M. van Driel | C. Beghein | Antoine Mocquet | Claire Newman | Mark Lemmon | T. Hudson | Anna Mittelholz | Nicholas Teanby | Nils T. Mueller | Sébastien Rodriguez | J. Irving | Ulrich Christensen | Daniele Antonangeli | Jim Garvin | John Grant | Troy Hudson | Scott King | Chloe Michaut | Jose Antonio Rodriguez-Manfredi | Matt Siegler | Eléanore Stutzmann | Martin van Driel | Mark Wieczorek | J. Grant | E. Stutzmann | S. Stähler | R. Garcia | Scott M. McLennan | S. McLennan | Gareth S. Collins | J. Maki | Nils T. Mueller | R. F. Garcia | Catherine L. Johnson | Christopher T. Russell | Jessica C. E. Irving | W. T. Pike | G. Collins | C. L. Johnson

[1]  Don L. Anderson,et al.  Seismology on Mars , 1977 .

[2]  J. Oberst Unusually high stress drops associated with shallow moonquakes , 1987 .

[3]  Kenneth L. Tanaka,et al.  A Prediction of Mars Seismicity from Surface Faulting , 1992, Science.

[4]  Ness,et al.  Global distribution of crustal magnetization discovered by the mars global surveyor MAG/ER experiment , 1999, Science.

[5]  David E. Smith,et al.  Mars Orbiter Laser Altimeter: Experiment summary after the first year of global mapping of Mars , 2001 .

[6]  M. Golombek A REVISION OF MARS SEISMICITY FROM SURFACE FAULTING: , 2001 .

[7]  A. McEwen,et al.  Repeated Aqueous Flooding from the Cerberus Fossae: Evidence for Very Recently Extant, Deep Groundwater on Mars , 2002 .

[8]  W. Marzocchi,et al.  A review and new insights on the estimation of the b-valueand its uncertainty , 2003 .

[9]  Ernst Hauber,et al.  Working models for spatial distribution and level of Mars' seismicity , 2006 .

[10]  Frequency-size distributions for intraplate earthquakes , 2007 .

[11]  J. Vaucher,et al.  The volcanic history of central Elysium Planitia: Implications for martian magmatism , 2009 .

[12]  Göran Ekström,et al.  The global CMT project 2004–2010: Centroid-moment tensors for 13,017 earthquakes , 2012 .

[13]  W. Banerdt,et al.  Verifying single-station seismic approaches using Earth-based data: Preparation for data return from the InSight mission to Mars , 2015 .

[14]  Seismometer Detection of Dust Devil Vortices by Ground Tilt , 2015, 1511.06580.

[15]  Takeo Ito,et al.  Strain rate dependency of oceanic intraplate earthquake b‐values at extremely low strain rates , 2016 .

[16]  Ralph D. Lorenz,et al.  Modeling of Ground Deformation and Shallow Surface Waves Generated by Martian Dust Devils and Perspectives for Near-Surface Structure Inversion , 2017 .

[17]  J. Tromp,et al.  Analysis of Regolith Properties Using Seismic Signals Generated by InSight’s HP3 Penetrator , 2017 .

[18]  K. Gwinner,et al.  Selection of the InSight Landing Site , 2017 .

[19]  David Mimoun,et al.  Evaluating the Wind-Induced Mechanical Noise on the InSight Seismometers , 2016, 1612.04308.

[20]  S. Calcutt,et al.  Seismic Coupling of Short-Period Wind Noise Through Mars’ Regolith for NASA’s InSight Lander , 2017 .

[21]  David Mimoun,et al.  The Noise Model of the SEIS Seismometer of the InSight Mission to Mars , 2017 .

[22]  D. Breuer,et al.  The Heat Flow and Physical Properties Package (HP3) for the InSight Mission , 2018, Space Science Reviews.

[23]  M. Golombek,et al.  Pre-mission InSights on the Interior of Mars , 2019, Space Science Reviews.

[24]  Sami W. Asmar,et al.  The Rotation and Interior Structure Experiment on the InSight Mission to Mars , 2018, Space Science Reviews.

[25]  W. B. Banerdt,et al.  The Color Cameras on the InSight Lander , 2018, Space Science Reviews.

[26]  Robert G. Deen,et al.  InSight Mars Lander Robotics Instrument Deployment System , 2018, Space Science Reviews.

[27]  D. Leneman,et al.  InSight Auxiliary Payload Sensor Suite (APSS) , 2019, Space Science Reviews.

[28]  Stéphane May,et al.  Impact-Seismic Investigations of the InSight Mission , 2018, Space Science Reviews.

[29]  D. Alazard,et al.  Flexible Mode Modelling of the InSight Lander and Consequences for the SEIS Instrument , 2018, Space Science Reviews.

[30]  Doris Breuer,et al.  Present‐Day Mars' Seismicity Predicted From 3‐D Thermal Evolution Models of Interior Dynamics , 2017 .

[31]  A. Trebi-Ollennu,et al.  Geology and Physical Properties Investigations by the InSight Lander , 2018, Space Science Reviews.

[32]  Roland Martin,et al.  Atmospheric Science with InSight , 2018, Space Science Reviews.

[33]  C. Johnson,et al.  A New Magnetic Field Activity Proxy for Mars From MAVEN Data , 2018, Geophysical Research Letters.

[34]  B. Banerdt,et al.  The Marsquake Service: Securing Daily Analysis of SEIS Data and Building the Martian Seismicity Catalogue for InSight , 2018, Space Science Reviews.

[35]  M. Golombek,et al.  A Pre-Landing Assessment of Regolith Properties at the InSight Landing Site , 2018, Space Science Reviews.

[36]  W. Banerdt,et al.  Impact Detection with InSight: Updated Estimates Using Measured Seismic Noise on Mars , 2019 .

[37]  S. Wiemer,et al.  The influence of faulting style on the size-distribution of global earthquakes , 2019 .

[38]  Ernst Hauber,et al.  Geology of the InSight landing site on Mars , 2020, Nature Communications.

[39]  M. Golombek,et al.  Estimation of the Seismic Moment Rate from an Incomplete Seismicity Catalog, in the Context of the InSight Mission to Mars , 2019, Bulletin of the Seismological Society of America.

[40]  Erwan Thébault,et al.  A New Model of the Crustal Magnetic Field of Mars Using MGS and MAVEN , 2019, Journal of geophysical research. Planets.

[41]  Huafeng Liu,et al.  SEIS: Insight’s Seismic Experiment for Internal Structure of Mars , 2019, Space Science Reviews.

[42]  C. Russell,et al.  Crustal and time-varying magnetic fields at the InSight landing site on Mars , 2020, Nature Geoscience.

[43]  David Mimoun,et al.  The atmosphere of Mars as observed by InSight , 2020, Nature Geoscience.

[44]  S. Kedar,et al.  The seismicity of Mars , 2020, Nature Geoscience.

[45]  J. Grant,et al.  Geology of the InSight landing site on Mars , 2020, Nature Communications.

[46]  C. Russell,et al.  Constraints on the shallow elastic and anelastic structure of Mars from InSight seismic data , 2020, Nature Geoscience.