Normal approximation under local dependence

We establish both uniform and nonuniform error bounds of the Berry–Esseen type in normal approximation under local dependence. These results are of an order close to the best possible if not best possible. They are more general or sharper than many existing ones in the literature. The proofs couple Stein’s method with the concentration inequality approach.

[1]  A. C. Berry The accuracy of the Gaussian approximation to the sum of independent variates , 1941 .

[2]  C. Esseen Fourier analysis of distribution functions. A mathematical study of the Laplace-Gaussian law , 1945 .

[3]  S. Nagaev Some Limit Theorems for Large Deviations , 1965 .

[4]  V. V. Petrov,et al.  On an Estimate of the Remainder Term in the Central Limit Theorem , 1967 .

[5]  C. Esseen On the concentration function of a sum of independent random variables , 1968 .

[6]  C. Stein A bound for the error in the normal approximation to the distribution of a sum of dependent random variables , 1972 .

[7]  L_1 bounds for asymptotic normality of m-dependent sums using Stein's technique , 1974 .

[8]  Louis H. Y. Chen,et al.  An $L_p$ Bound for the Remainder in a Combinatorial Central Limit Theorem , 1978 .

[9]  Louis H. Y. Chen Two central limit problems for dependent random variables , 1978 .

[10]  On the Convergence Rate in the Central Limit Theorem for m-Dependent Random Variables , 1980 .

[11]  Alexander Tikhomirov,et al.  On the Convergence Rate in the Central Limit Theorem for Weakly Dependent Random Variables , 1981 .

[12]  B. Rao A non-uniform estimate of the rate of convergence in the central limit theorem for m-dependent random fields , 1981 .

[13]  Non - uniform estimates and asymptotic expansions of the remainder in the central limit theorem for , 1984 .

[14]  Louis H. Y. Chen The Rate of Convergence in a Central Limit Theorem for Dependent Random Variables with Arbitrary Index Set , 1986 .

[15]  Pierre Baldi,et al.  On Normal Approximations of Distributions in Terms of Dependency Graphs , 1989 .

[16]  Pierre Baldi,et al.  A Normal Approximation for the Number of Local Maxima of a Random Function on a Graph , 1989 .

[17]  R. Dasgupta Non-Uniform Speed of Convergence to Normality for Some Stationary m-Dependent Processes , 1992 .

[18]  Y. Rinott On normal approximation rates for certain sums of dependent random variables , 1994 .

[19]  V. V. Petrov Limit Theorems of Probability Theory: Sequences of Independent Random Variables , 1995 .

[20]  Y. Rinott,et al.  A Multivariate CLT for Local Dependence withn -1/2 log nRate and Applications to Multivariate Graph Related Statistics , 1996 .

[21]  Amir Dembo,et al.  Some Examples of Normal Approximations by Stein’s Method , 1996 .

[22]  On the Convergence Rate in the Central Limit Theorem for Negatively Associated Sequences , 1997 .

[23]  Louis H. Y. Chen Stein’s Method: Some Perspectives with Applications , 1998 .

[24]  Luigi Accardi,et al.  Probability Towards 2000 , 1998 .

[25]  On a Lower Bound of the Rate of Convergence in the Central Limit Theorem for m-Dependent Random Fields , 1999 .

[26]  Qi-Man Shao,et al.  A non-uniform Berry–Esseen bound via Stein's method , 2001 .