ACRYLAMIDE CONTENT IN TORTILLA CHIPS PREPARED FROM PIGMENTED MAIZE KERNELS

El maiz es uno de los cereales mas cultivados en el mundo. Ademas, los productos elaborados a partir de harinas nixtamalizadas de maiz como las frituras de tortillas son consumidos ampliamente en el mundo. Por lo tanto, la presencia de acrilamida, un potente cancerigeno formado durante el freido, es de gran interes debido a sus posibles efectos en la salud. Debido a que los maices pigmentados contienen metabolicos secundarios como los compuestos fenicios que puedan influir en el contenido de acrilamida, el objetivo de este trabajo fue evaluar la formacion de acrilamida en frituras de tortilla preparadas con harinas nixtamalizadas de maiz blanco, negro, rojo, morado y amarillo. El contenido de acrilamida se correlaciono con las propiedades fisicoquimicas de las harinas. Los resultados mostraron que el contenido de acrilamida en las muestras de tortilla fritas durante 30 s se correlaciono con la concentracion de grasas (r=0.82), antocianinas (r=- 0.51) y fenoles totales (r=0.42) en las harinas (p < 0.05). Los niveles mas bajos de acrilamida se encontraron en las frituras preparadas con maiz negro y rojo. Los resultados sugieren que la seleccion apropiada de genotipos de maiz ricos en antocianinas y un bajo contenido de grasas puede reducir la formacion de acrilamida en frituras de tortilla y otros alimentos a base de maiz procesados termicamente

[1]  Xiaosong Hu,et al.  Role of plant polyphenols in acrylamide formation and elimination. , 2015, Food chemistry.

[2]  Xinyu Chen,et al.  Antioxidant-capacity-based models for the prediction of acrylamide reduction by flavonoids. , 2015, Food chemistry.

[3]  Yong Wang,et al.  Chlorogenic acid increased acrylamide formation through promotion of HMF formation and 3-aminopropionamide deamination. , 2014, Journal of hazardous materials.

[4]  S. Jayanty,et al.  Role of polyphenols in acrylamide formation in the fried products of potato tubers with colored flesh , 2013 .

[5]  J. Cárdenas,et al.  Nutraceutical properties of flour and tortillas made with an ecological nixtamalization process. , 2013, Journal of food science.

[6]  Ying Zhang,et al.  Relationship between antioxidants and acrylamide formation: A review , 2013 .

[7]  G. Arámbula-Villa,et al.  Mitigating effect of piquin pepper (Capsicum annuum L. var. Aviculare) oleoresin on acrylamide formation in potato and tortilla chips , 2012 .

[8]  D. Lineback,et al.  Acrylamide in foods: a review of the science and future considerations. , 2012, Annual review of food science and technology.

[9]  H. E. Flores,et al.  New ecological nixtamalisation process for tortilla production and its impact on the chemical properties of whole corn flour and wastewater effluents , 2012 .

[10]  V. Gökmen,et al.  Phenolic compounds, carotenoids, anthocyanins, and antioxidant capacity of colored maize (Zea mays L.) kernels. , 2012, Journal of agricultural and food chemistry.

[11]  N. Palacios-Rojas,et al.  Grain and Tortilla Quality in Landraces and Improved Maize Grown in the Highlands of Mexico , 2011, Plant foods for human nutrition.

[12]  V. Fogliano,et al.  Effect of standard phenolic compounds and olive oil phenolic extracts on acrylamide formation in an emulsion system , 2011 .

[13]  P. Brat,et al.  Study of acrylamide mitigation in model system: Effect of pure phenolic compounds , 2010 .

[14]  Sergio O. Serna-Saldívar,et al.  Phenolic content and antioxidant activity of tortillas produced from pigmented maize processed by conventional nixtamalization or extrusion cooking , 2010 .

[15]  S. Ou,et al.  Effect of antioxidants on elimination and formation of acrylamide in model reaction systems. , 2010, Journal of hazardous materials.

[16]  H. Corke,et al.  Compositions of phenolic compounds, amino acids and reducing sugars in commercial potato varieties and their effects on acrylamide formation. , 2010, The Journal of the Science of Food and Agriculture.

[17]  J. Navarro,et al.  Asparagine decarboxylation by lipid oxidation products in model systems. , 2010, Journal of agricultural and food chemistry.

[18]  V. Fogliano,et al.  Lipid oxidation promotes acrylamide formation in fat-rich model systems , 2010 .

[19]  S. Ou,et al.  Effects of fruit extracts on the formation of acrylamide in model reactions and fried potato crisps. , 2010, Journal of agricultural and food chemistry.

[20]  V. Gökmen,et al.  Investigation of acrylamide formation on bakery products using a crust-like model. , 2009, Molecular nutrition & food research.

[21]  F. Hidalgo,et al.  Degradation of asparagine to acrylamide by carbonyl-amine reactions initiated by alkadienals , 2009 .

[22]  H. Corke,et al.  Evaluation of the effect of plant extracts and phenolic compounds on reduction of acrylamide in an asparagine/glucose model system by RP-HPLC-DAD , 2009 .

[23]  K. Parkin,et al.  Antioxidant activity, phenolic compounds and anthocyanins content of eighteen strains of Mexican maize , 2009 .

[24]  S. Ou,et al.  Reduction of acrylamide formation by selected agents in fried potato crisps on industrial scale , 2008 .

[25]  M. Goodman,et al.  Isozymatic and Morphological Diversity in the Races of Maize of Mexico , 2008, Economic Botany.

[26]  Columba de la Parra,et al.  Effect of processing on the phytochemical profiles and antioxidant activity of corn for production of masa, tortillas, and tortilla chips. , 2007, Journal of agricultural and food chemistry.

[27]  R. Liu,et al.  Potential synergy of phytochemicals in cancer prevention: mechanism of action. , 2004, The Journal of nutrition.

[28]  B. Wedzicha,et al.  Food chemistry: Acrylamide is formed in the Maillard reaction , 2002, Nature.

[29]  Rui Hai Liu,et al.  Antioxidant activity of grains. , 2002, Journal of agricultural and food chemistry.

[30]  Eden Tareke,et al.  Analysis of acrylamide, a carcinogen formed in heated foodstuffs. , 2002, Journal of agricultural and food chemistry.

[31]  Michael Pointer,et al.  Measurement of appearance , 2002, Other Conferences.

[32]  E. Abdel‐Aal,et al.  A Rapid Method for Quantifying Total Anthocyanins in Blue Aleurone and Purple Pericarp Wheats , 1999 .

[33]  J. Juvik,et al.  Quantification of carotenoid and tocopherol antioxidants in Zea mays. , 1999, Journal of agricultural and food chemistry.

[34]  R. Lamuela-Raventós,et al.  Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent , 1999 .

[35]  M. H. Lee Book reviewOfficial methods of analysis of AOAC International (16th edn): edited by Patricia A. Cunniff, AOAC International, 1995. $359.00 (North America)/$399.00 (elsewhere) (xxvi + 1899 pages) ISBN 0 935 584 54 4 , 1995 .

[36]  B. Stavric Antimutagens and anticarcinogens in foods. , 1994, Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association.

[37]  W. Seibel Approved Methods of the American Association of Cereal Chemists, 8th Edition (Standardmethoden der amerikanischen Gesellschaft für Getreidechemiker, 8. Ausgabe). Approved Methods Committee American Association of Cereal Chemists, Inc. St. Paul/Minnesota, USA , 1989 .

[38]  H. Schaumburg,et al.  A Review of Acrylamide Neurotoxicity Part II. Experimental Animal Neurotoxicity and Pathologic Mechanisms , 1974, Canadian Journal of Neurological Sciences / Journal Canadien des Sciences Neurologiques.

[39]  P. Spencer,et al.  A Review of Acrylamide Neurotoxicity Part I. Properties, Uses and Human Exposure , 1974, Canadian Journal of Neurological Sciences / Journal Canadien des Sciences Neurologiques.