Clustering with r-regular graphs

In this paper, we present a novel graph-based clustering method, where we decompose a (neighborhood) graph into (disjoint) r-regular graphs followed by further refinement through optimizing the normalized cluster utility. We solve the r-regular graph decomposition using a linear programming. However, this simple decomposition suffers from inconsistent edges if clusters are not well separated. We optimize the normalized cluster utility in order to eliminate inconsistent edges or to merge similar clusters into a group within the principle of minimal K-cut. The method is especially useful in the presence of noise and outliers. Moreover, the method detects the number of clusters within a pre-specified range. Numerical experiments with synthetic and UCI data sets, confirm the useful behavior of the method.

[1]  Mario Vento,et al.  Assessing the Performance of a Graph-Based Clustering Algorithm , 2007, GbRPR.

[2]  Catherine Blake,et al.  UCI Repository of machine learning databases , 1998 .

[3]  Brian Everitt,et al.  Cluster analysis , 1974 .

[4]  Ron Shamir,et al.  A clustering algorithm based on graph connectivity , 2000, Inf. Process. Lett..

[5]  Michael I. Jordan,et al.  On Spectral Clustering: Analysis and an algorithm , 2001, NIPS.

[6]  Vipin Kumar,et al.  Chameleon: Hierarchical Clustering Using Dynamic Modeling , 1999, Computer.

[7]  Anil K. Jain,et al.  Algorithms for Clustering Data , 1988 .

[8]  Vijay V. Vazirani,et al.  Approximation Algorithms , 2001, Springer Berlin Heidelberg.

[9]  J. MacQueen Some methods for classification and analysis of multivariate observations , 1967 .

[10]  Robin J. Wilson Introduction to Graph Theory , 1974 .

[11]  Jitendra Malik,et al.  Normalized Cuts and Image Segmentation , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[12]  Rui Xu,et al.  Survey of clustering algorithms , 2005, IEEE Transactions on Neural Networks.

[13]  H. L. Le Roy,et al.  Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability; Vol. IV , 1969 .

[14]  D. Matula,et al.  Properties of Gabriel Graphs Relevant to Geographic Variation Research and the Clustering of Points in the Plane , 2010 .

[15]  Roderick Urquhart,et al.  Graph theoretical clustering based on limited neighbourhood sets , 1982, Pattern Recognit..

[16]  Anil K. Jain,et al.  Data clustering: a review , 1999, CSUR.

[17]  Ray A. Jarvis,et al.  Clustering Using a Similarity Measure Based on Shared Near Neighbors , 1973, IEEE Transactions on Computers.

[18]  S. Dongen Graph clustering by flow simulation , 2000 .

[19]  Jong-Sheng Cherng,et al.  A hypergraph based clustering algorithm for spatial data sets , 2001, Proceedings 2001 IEEE International Conference on Data Mining.

[20]  Anil K. Jain,et al.  Statistical Pattern Recognition: A Review , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[21]  Charles T. Zahn,et al.  Graph-Theoretical Methods for Detecting and Describing Gestalt Clusters , 1971, IEEE Transactions on Computers.

[22]  Ulrik Brandes,et al.  Experiments on Graph Clustering Algorithms , 2003, ESA.

[23]  Narendra Ahuja,et al.  Dot Pattern Processing Using Voronoi Neighborhoods , 1982, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[24]  J. H. Ward Hierarchical Grouping to Optimize an Objective Function , 1963 .

[25]  Daniel Cremers,et al.  Binary Partitioning, Perceptual Grouping, and Restoration with Semidefinite Programming , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[26]  Santosh S. Vempala,et al.  On clusterings: Good, bad and spectral , 2004, JACM.

[27]  Alexander Schwartz,et al.  Implementing weighted b-matching algorithms: insights from a computational study , 2000, JEAL.

[28]  G. Krishna,et al.  Agglomerative clustering using the concept of mutual nearest neighbourhood , 1978, Pattern Recognit..