On Effective Stopping Time Selection for Visco-Plastic Nonlinear BV Diffusion Filters Used in Image Denoising

We consider denoising applications using nonlinear diffusion filters of BV type. Using the multiple timescales method, an equation is derived that approximates the time evolution of the image noise. Analysis of the corresponding variational inequality leads to an estimate of the timescale over which the noise decays to its local mean, given in terms of the filter parameters. We present a number of computed examples that demonstrate the validity of our stopping time estimate.

[1]  R. DeVore,et al.  Nonlinear Approximation and the Space BV(R2) , 1999 .

[2]  Ian A. Frigaard,et al.  The Effects of Yield Stress Variation on Uniaxial Exchange Flows of Two Bingham Fluids in a Pipe , 2000, SIAM J. Appl. Math..

[3]  Raja R. Huilgol,et al.  On the determination of the plug flow region in Bingham fluids through the application of variational inequalities , 1995 .

[4]  P. Lions,et al.  Image recovery via total variation minimization and related problems , 1997 .

[5]  Niklas Nordström Biased Anisotropic Diffusion - A Unified Regularization and Diffusion Approach to Edge Detection , 1990, ECCV.

[6]  Richard V. Craster,et al.  Dynamics of cooling domes of viscoplastic fluid , 2000, Journal of Fluid Mechanics.

[7]  L. Vese,et al.  A Variational Method in Image Recovery , 1997 .

[8]  Fadil Santosa,et al.  Recovery of Blocky Images from Noisy and Blurred Data , 1996, SIAM J. Appl. Math..

[9]  Joachim Weickert,et al.  Scale-Space Properties of Regularization Methods , 1999, Scale-Space.

[10]  V. Caselles,et al.  Minimizing total variation flow , 2000, Differential and Integral Equations.

[11]  S.D.R. Wilson,et al.  Squeezing flow of a Bingham material , 1993 .

[12]  Mila Nikolova,et al.  Local Strong Homogeneity of a Regularized Estimator , 2000, SIAM J. Appl. Math..

[13]  D. Dobson,et al.  Analysis of regularized total variation penalty methods for denoising , 1996 .

[14]  B. Dacorogna Direct methods in the calculus of variations , 1989 .

[15]  J. Lions,et al.  Inequalities in mechanics and physics , 1976 .

[16]  P. Lions,et al.  Image selective smoothing and edge detection by nonlinear diffusion. II , 1992 .

[17]  J. Oldroyd,et al.  Two-dimensional plastic flow of a Bingham solid , 1947, Mathematical Proceedings of the Cambridge Philosophical Society.

[18]  Yann Gousseau,et al.  Are Natural Images of Bounded Variation? , 2001, SIAM J. Math. Anal..

[19]  R. Glowinski Lectures on Numerical Methods for Non-Linear Variational Problems , 1981 .

[20]  Joachim Weickert,et al.  Scale-Space Properties of Nonstationary Iterative Regularization Methods , 2000, J. Vis. Commun. Image Represent..

[21]  C. Ballester,et al.  The Dirichlet Problem for the Total Variation Flow , 2001 .

[22]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[23]  Marius Buliga,et al.  Geometric Evolution Problems and Action-measures , 2022 .

[24]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[25]  R. Glowinski,et al.  Numerical Analysis of Variational Inequalities , 1981 .

[26]  H. Brezis Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert , 1973 .

[27]  Ian A. Frigaard,et al.  Uniaxial exchange flows of two Bingham fluids in a cylindrical duct , 1998 .

[28]  S. H. Bittleston,et al.  The axial flow of a Bingham plastic in a narrow eccentric annulus , 1991, Journal of Fluid Mechanics.

[29]  T. Chan,et al.  Exact Solutions to Total Variation Regularization Problems , 1996 .

[30]  S. Wilson,et al.  The channel entry problem for a yield stress fluid , 1996 .

[31]  Curtis R. Vogel,et al.  Fast Total Variation-Based Image Reconstruction , 1995 .

[32]  Joachim Weickert,et al.  Relations Between Regularization and Diffusion Filtering , 2000, Journal of Mathematical Imaging and Vision.

[33]  Hinch Perturbation Methods , 1991 .

[34]  P. Lions,et al.  Axioms and fundamental equations of image processing , 1993 .

[35]  Hans-Hellmut Nagel,et al.  An Investigation of Smoothness Constraints for the Estimation of Displacement Vector Fields from Image Sequences , 1983, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[36]  Thomas S. Huang,et al.  Image processing , 1971 .

[37]  E. C. Bingham Fluidity And Plasticity , 1922 .

[38]  Curtis R. Vogel,et al.  Iterative Methods for Total Variation Denoising , 1996, SIAM J. Sci. Comput..

[39]  Joachim Weickert,et al.  Anisotropic diffusion in image processing , 1996 .

[40]  S. Mallat A wavelet tour of signal processing , 1998 .

[41]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[42]  Donald Geman,et al.  Nonlinear image recovery with half-quadratic regularization , 1995, IEEE Trans. Image Process..

[43]  Gene H. Golub,et al.  A Nonlinear primal dual method for TV-based image restoration , 1996 .

[44]  C. Mei,et al.  Slow spreading of a sheet of Bingham fluid on an inclined plane , 1989, Journal of Fluid Mechanics.

[45]  O. Hassager,et al.  Flow of viscoplastic fluids in eccentric annular geometries , 1992 .

[46]  M. Nashed,et al.  Least squares and bounded variation regularization with nondifferentiable functionals , 1998 .

[47]  Jean-Michel Morel,et al.  Variational methods in image segmentation , 1995 .

[48]  Rachid Deriche,et al.  Computing Optical Flow via Variational Techniques , 1999, SIAM J. Appl. Math..

[49]  T. Chan,et al.  On the Convergence of the Lagged Diffusivity Fixed Point Method in Total Variation Image Restoration , 1999 .

[50]  Michel Chipot,et al.  Analysis of a Nonconvex Problem Related to Signal Selective Smoothing , 1997 .

[51]  P. P. Mosolov,et al.  Variational methods in the theory of the fluidity of a viscous-plastic medium , 1965 .

[52]  Satyanad Kichenassamy,et al.  The Perona-Malik Paradox , 1997, SIAM J. Appl. Math..

[53]  M. Novaga,et al.  The Total Variation Flow in RN , 2002 .

[54]  Giuseppe Buttazzo,et al.  Calculus of Variations and Partial Differential Equations , 1988 .

[55]  K. Kunisch,et al.  Regularization of linear least squares problems by total bounded variation , 1997 .

[56]  L. Rudin,et al.  Feature-oriented image enhancement using shock filters , 1990 .

[57]  Curtis R. Vogel,et al.  Fast numerical methods for total variation minimization in image reconstruction , 1995, Optics & Photonics.

[58]  W. Prager On Slow Visco-Plastic Flow1 , 1952 .

[59]  R. Deriche,et al.  Regularization and Scale Space , 1994 .

[60]  O. Scherzer Stable Evaluation of Differential Operators and Linear and Nonlinear Multi-scale Filtering , 1997 .

[61]  C. Vogel A Multigrid Method for Total Variation-Based Image Denoising , 1995 .

[62]  Stephen K. Wilson,et al.  Thin-film flow of a viscoplastic material round a large horizontal stationary or rotating cylinder , 2001, Journal of Fluid Mechanics.

[63]  D. Dobson,et al.  Convergence of an Iterative Method for Total Variation Denoising , 1997 .

[64]  R. Byron Bird,et al.  The Rheology and Flow of Viscoplastic Materials , 1983 .

[65]  Michael J. Black,et al.  The Robust Estimation of Multiple Motions: Parametric and Piecewise-Smooth Flow Fields , 1996, Comput. Vis. Image Underst..

[66]  Ian A. Frigaard,et al.  On the stability of Poiseuille flow of a Bingham fluid , 1994, Journal of Fluid Mechanics.

[67]  Luis Alvarez,et al.  Formalization and computational aspects of image analysis , 1994, Acta Numerica.

[68]  C. Vogel,et al.  Analysis of bounded variation penalty methods for ill-posed problems , 1994 .

[69]  Richard V. Craster,et al.  A consistent thin-layer theory for Bingham plastics , 1999 .