Driving factors of the directional variability of thermal infrared signal in temperate regions

Abstract Land surface temperature (LST) is a good indicator of the land surface state. The measurement of LST is however prone to directional anisotropy which may severely affect the interpretation of the measurements if it is not corrected. This study aims at determining and describing the impact of various factors on anisotropy of continuous crops at mid-latitudes. The SCOPE (Soil Canopy Observation, Photochemistry and Energy fluxes) model is used as a data generator of directional anisotropy since it enables exploring a very large range of meteorological, biochemical and geometrical conditions. An original indicator, the standard deviation of anisotropy in principal plane, is used in order to investigate the impact of the tested variables and parameters. We found that anisotropy is, at first order, related to seasonal trends, in relation to the amount of incident radiation and the solar zenith angle. Then the geometrical structure of the canopy modifies the anisotropy (LAI, LADF, hot spot parameter) followed by the coupling between the water status of the soil and the stress of canopy. Wind speed which is known for having a significant impact on temperature level has a very limited influence on anisotropy. An analysis of the amplitude of anisotropy in the principal and perpendicular planes (from − 50° to 50° zenith) showed that anisotropy can reach up to 11 °C and ~ 3.5 °C respectively. The impact of satellite orbit on anisotropy is also discussed and it is found that, given the latitudes and the season, the anisotropy can severely affect measurements. This is particularly true when the satellite measurements are acquired in a configuration close to the solar principal plane, which often occur at low latitude. These results are of great help in the context of developing simple methods which could then be integrated into satellite data processing algorithms.

[1]  W. Verhoef,et al.  Coupled soil–leaf-canopy and atmosphere radiative transfer modeling to simulate hyperspectral multi-angular surface reflectance and TOA radiance data , 2007 .

[2]  José A. Sobrino,et al.  Surface temperature retrieval from Along Track Scanning Radiometer 2 data: Algorithms and validation , 2004 .

[3]  O. Hagolle,et al.  LAI, fAPAR and fCover CYCLOPES global products derived from VEGETATION: Part 1: Principles of the algorithm , 2007 .

[4]  F. Baret,et al.  Evaluation of Canopy Biophysical Variable Retrieval Performances from the Accumulation of Large Swath Satellite Data , 1999 .

[5]  Jean-Pierre Lagouarde,et al.  Directional anisotropy in thermal infrared measurements over Toulouse city centre during the CAPITOUL measurement campaigns: first results , 2008 .

[6]  José A. Sobrino,et al.  Multi-channel and multi-angle algorithms for estimating sea and land surface temperature with ATSR data , 1996 .

[7]  Denis Loustau,et al.  Temperature response of parameters of a biochemically based model of photosynthesis. II. A review of experimental data , 2002 .

[8]  F. Baret,et al.  PROSPECT: A model of leaf optical properties spectra , 1990 .

[9]  M. Weiss,et al.  Reliability of the estimation of vegetation characteristics by inversion of three canopy reflectance models on airborne POLDER data , 2002 .

[10]  Manfred Owe,et al.  On the relationship between thermal emissivity and the normalized difference vegetation index for natural surfaces , 1993 .

[11]  Albert Olioso,et al.  Using directional TIR measurements and 3D simulations to assess the limitations and opportunities of water stress indices , 2004 .

[12]  S. Idso,et al.  Wheat canopy temperature: A practical tool for evaluating water requirements , 1977 .

[13]  Simon J. Hook,et al.  Generating Consistent Land Surface Temperature and Emissivity Products Between ASTER and MODIS Data for Earth Science Research , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[14]  A. Strahler,et al.  A hotspot model for leaf canopies , 1991 .

[15]  Inge Sandholt,et al.  Directional Effects on Land Surface Temperature Estimation From Meteosat Second Generation for Savanna Landscapes , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[16]  Albert Olioso,et al.  Using multidirectional thermography to characterize water status of cotton , 2003 .

[17]  Mitchell D. Goldberg,et al.  Angular anisotropy of satellite observations of land surface temperature , 2012 .

[18]  J. Moreno,et al.  Global sensitivity analysis of the SCOPE model: What drives simulated canopy-leaving sun-induced fluorescence? , 2015 .

[19]  S. Fabre,et al.  Influence of soil moisture content on spectral reflectance of bare soils in the 0.4–14 μm domain , 2013 .

[20]  Wout Verhoef,et al.  Inversion of a coupled canopy–atmosphere model using multi-angular top-of-atmosphere radiance data: A forest case study , 2011 .

[21]  José A. Sobrino,et al.  Thermal infrared radiance model for interpreting the directional radiometric temperature of a vegetative surface , 1990 .

[22]  R D Jackson,et al.  Plant canopy information extraction from composite scene reflectance of row crops. , 1979, Applied optics.

[23]  A. Kuusk,et al.  Modeling directional forest reflectance with the hybrid type forest reflectance model FRT , 2014 .

[24]  Glynn C. Hulley,et al.  Directional Viewing Effects on Satellite Land Surface Temperature Products Over Sparse Vegetation Canopies—A Multisensor Analysis , 2013, IEEE Geoscience and Remote Sensing Letters.

[25]  Jerrell R. Ballard,et al.  Thermal Infrared Hot Spot and Dependence on Canopy Geometry , 2001 .

[26]  Albert Rango,et al.  Temperature and emissivity separation from multispectral thermal infrared observations , 2002 .

[27]  J. Lagouarde,et al.  Experimental study of brightness surface temperature angular variations of maritime pine (Pinus pinaster) stands. , 2000 .

[28]  Albert Olioso,et al.  An evaluation of SCOPE : a tool to simulate the directional anisotropy of satellite-measured surface temperatures , 2015 .

[29]  José A. Sobrino,et al.  Canopy directional emissivity: Comparison between models , 2005 .

[30]  Albert Olioso,et al.  Development of a simple parametric model to simulate the directional effects in the thermal infrared domain , 2014, 2014 IEEE Geoscience and Remote Sensing Symposium.

[31]  Jean-Pierre Wigneron,et al.  Estimation of energy fluxes from thermal infrared, spectral reflectances, microwave data and SVAT modeling , 1999 .

[32]  Catherine Ottlé,et al.  Analytical parameterization of canopy directional emissivity and directional radiance in the thermal infrared. Application on the retrieval of soil and foliage temperatures using two directional measurements , 1997 .

[33]  Jeffrey L. Privette,et al.  Directional effects in a daily AVHRR land surface temperature dataset over Africa , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[34]  Wenhan Qin,et al.  Thermal Emission Hot-Spot Effect of Crop Canopies—Part I: Simulation , 2010, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[35]  Yann Kerr,et al.  An experimental study of angular effects on surface temperature for various plant canopies and bare soils , 1995 .

[36]  C. Bacour,et al.  Comparison of four radiative transfer models to simulate plant canopies reflectance: direct and inverse mode. , 2000 .

[37]  A. Prata Land surface temperatures derived from the advanced very high resolution radiometer and the along‐track scanning radiometer: 1. Theory , 1993 .

[38]  Michael A. Palecki,et al.  Land Surface Temperature product validation using NOAA's surface climate observation networks—Scaling methodology for the Visible Infrared Imager Radiometer Suite (VIIRS) , 2012 .

[39]  Jean-Pierre Lagouarde,et al.  Modelling Daytime Thermal Infrared Directional Anisotropy over Toulouse City Centre , 2010 .

[40]  Jean-Philippe Gastellu-Etchegorry,et al.  Thermal infrared radiative transfer within three-dimensional vegetation covers , 2003 .

[41]  J. Berry,et al.  A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species , 1980, Planta.

[42]  Gérard Dedieu,et al.  The MISTIGRI thermal infrared project: scientific objectives and mission specifications , 2013 .

[43]  Wenhan Qin,et al.  Temporal patterns of thermal emission directionality of crop canopies , 2011 .

[44]  Enric Valor,et al.  On the angular variation of thermal infrared emissivity of inorganic soils , 2012 .

[45]  Jeff Dozier,et al.  A generalized split-window algorithm for retrieving land-surface temperature from space , 1996, IEEE Trans. Geosci. Remote. Sens..

[46]  P. Béziat,et al.  Carbon balance of a three crop succession over two cropland sites in South West France , 2009 .

[47]  W. Verhoef Light scattering by leaf layers with application to canopy reflectance modelling: The SAIL model , 1984 .

[48]  Alfred J Prata,et al.  The Angular Behavior of Emitted Thermal Infrared Radiation (8-12 , 2003 .

[49]  J. Norman,et al.  Algorithms for extracting information from remote thermal-IR observations of the Earth's surface , 1995 .

[50]  Simon J. Hook,et al.  Thirsty thermal infrared spatial system , 2014, 2014 IEEE Geoscience and Remote Sensing Symposium.

[51]  Albert Olioso,et al.  Simulating the relationship between thermal emissivity and the Normalized Difference Vegetation Index , 1995 .

[52]  Daniel S. Kimes,et al.  Directional radiometric measurements of row-crop temperatures , 1983 .

[53]  Jeffrey A. Pedelty,et al.  Three-dimensional modeling of agricultural canopies for thermal IR exitance studies , 1997, Remote Sensing.

[54]  J. P. Kerr,et al.  Effect of Viewing Angle on Canopy Temperature Measurements with Infrared Thermometers1 , 1967 .

[55]  Z. Li,et al.  Towards a local split window method over land surfaces , 1990 .

[56]  Glynn C. Hulley,et al.  Temperature and Emissivity Separation From MSG/SEVIRI Data , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[57]  D. S. Kimes,et al.  Remote sensing of row crop structure and component temperatures using directional radiometric temperatures and inversion techniques , 1983 .

[58]  Albert Olioso,et al.  Reconstruction of temporal variations of evapotranspiration using instantaneous estimates at the time of satellite overpass , 2012 .

[59]  I. R. Cowan Stomatal Behaviour and Environment , 1978 .

[60]  Qing Xiao,et al.  Unified Optical-Thermal Four-Stream Radiative Transfer Theory for Homogeneous Vegetation Canopies , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[61]  Frédéric Baret,et al.  Modeling directional brightness temperature over a maize canopy in row structure , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[62]  Timothy R. Oke,et al.  Effects of urban surface geometry on remotely-sensed surface temperature , 1998 .

[63]  Albert Olioso Simulation des échanges d'énergie et de masse d'un couvert végétal, dans le but de relier la transpiration et la photosynthèse aux mesures de réflectance et de température de surface , 1992 .

[64]  Adriaan A. Van de Griend,et al.  Bare soil surface resistance to evaporation by vapor diffusion under semiarid conditions , 1994 .

[65]  W. Verhoef,et al.  An integrated model of soil-canopy spectral radiances, photosynthesis, fluorescence, temperature and energy balance , 2009 .

[66]  S. Ustin,et al.  Estimation of water-related biochemical and biophysical vegetation properties using multitemporal airborne hyperspectral data and its comparison to MODIS spectral response , 2014 .

[67]  W. Verhoef Theory of radiative transfer models applied in optical remote sensing of vegetation canopies , 1998 .

[68]  José A. Sobrino,et al.  A physical model for interpreting the land surface temperature obtained by remote sensors over incomplete canopies , 1992 .

[69]  Shuichi Rokugawa,et al.  A temperature and emissivity separation algorithm for Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images , 1998, IEEE Trans. Geosci. Remote. Sens..

[70]  Susan L. Ustin,et al.  Anisotropy of thermal infrared exitance in sunflower canopies , 1989 .

[71]  J. C. Price Estimating surface temperatures from satellite thermal infrared data—A simple formulation for the atmospheric effect☆ , 1983 .

[72]  A. Lesaignoux Estimation de l'humidité de surface des sols nus à partir de l'imagerie hyperspectrale à haute résolution spatiale sur le domaine optique 0. 4 - 14 µm , 2010 .