A two-step plasma processing for gold nanoparticles supported on silicon near-infrared plasmonics

A two-step sputtering methodology for fabricating gold nanoparticles supported on silicon with tuneable surface plasmon resonance down to the near-infrared spectral range has been developed. This methodology uses modification of the wettability of Si surfaces by an intermediate O2 plasma treatment to decouple diameter and height of nanoparticles as tuneable parameters to tailor the plasmon resonance.

[1]  J. Heber Plasmonics: Surfing the wave , 2009, Nature.

[2]  Dušan Hemzal,et al.  Spectroscopic ellipsometry and polarimetry for materials and systems analysis at the nanometer scale: state-of-the-art, potential, and perspectives , 2009, Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology.

[3]  Nathan S. Lewis,et al.  Growth of vertically aligned Si wire arrays over large areas (>1 cm^2) with Au and Cu catalysts , 2007 .

[4]  Benjamin J Wiley,et al.  Mid-IR plasmonics: near-field imaging of coherent plasmon modes of silver nanowires. , 2009, Nano letters.

[5]  A Paul Alivisatos,et al.  Gold nanorods as novel nonbleaching plasmon-based orientation sensors for polarized single-particle microscopy. , 2005, Nano letters.

[6]  Tzyy-Jiann Wang,et al.  Electro-optically modulated localized surface plasmon resonance biosensors with gold nanoparticles , 2006 .

[7]  P. Hammond Form and Function in Multilayer Assembly: New Applications at the Nanoscale , 2004 .

[8]  Allen,et al.  Low-temperature structure and phase transitions at the Au/Si (100) interface. , 1993, Physical review. B, Condensed matter.

[9]  K. Sun,et al.  Formation of ultrafine uniform gold nanoparticles by sputtering and redeposition , 2009 .

[10]  David J. Hwang,et al.  Nanosecond laser ablation of gold nanoparticle films , 2006 .

[11]  Prashant K. Jain,et al.  On the Universal Scaling Behavior of the Distance Decay of Plasmon Coupling in Metal Nanoparticle Pairs: A Plasmon Ruler Equation , 2007 .

[12]  Maria Losurdo,et al.  Enhanced absorption in Au nanoparticles/a-Si:H/c-Si heterojunction solar cells exploiting Au surface plasmon resonance , 2009 .

[13]  K. Herwig,et al.  Comparative investigation of the nucleation and growth of fcc-metal particles (Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au) on amorphous carbon and SiO2 substrates during vapor deposition at elevated temperatures , 1996 .

[14]  C. R. Chris Wang,et al.  Gold Nanorods: Electrochemical Synthesis and Optical Properties , 1997 .

[15]  P. Clancy,et al.  MEAM molecular dynamics study of a gold thin film on a silicon substrate , 2004 .

[16]  Toshiro Maruyama,et al.  Evidence of an enhanced interband absorption in Au nanoparticles: Size-dependent electronic structure and optical properties , 2005 .

[17]  M. El-Sayed,et al.  Spectral Properties and Relaxation Dynamics of Surface Plasmon Electronic Oscillations in Gold and Silver Nanodots and Nanorods , 1999 .

[18]  M. El-Sayed,et al.  Simulation of the Optical Absorption Spectra of Gold Nanorods as a Function of Their Aspect Ratio and the Effect of the Medium Dielectric Constant , 1999 .

[19]  Ewold Verhagen,et al.  Nanowire plasmon excitation by adiabatic mode transformation. , 2009, Physical review letters.

[20]  D. Gosain,et al.  Si Nanowires Grown via the Vapour–Liquid–Solid Reaction , 1998 .

[21]  Carl V. Thompson,et al.  Texture development in polycrystalline thin films , 1995 .

[22]  D. L. Jeanmaire,et al.  Surface raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode , 1977 .

[23]  K. Prince,et al.  Wetting of Si surfaces by Au–Si liquid alloys , 2003 .

[24]  P. Clancy,et al.  Development of atomistic MEAM potentials for the silicon–oxygen–gold ternary system , 2005 .

[25]  A. A. Studna,et al.  Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV , 1983 .