Interactive Visual Calibration of Volumetric Head-Tracked 3D Displays

Head-tracked 3D displays can provide a compelling 3D effect, but even small inaccuracies in the calibration of the participant's viewpoint to the display can disrupt the 3D illusion. We propose a novel interactive procedure for a participant to easily and accurately calibrate a head-tracked display by visually aligning patterns across a multi-screen display. Head-tracker measurements are then calibrated to these known viewpoints. We conducted a user study to evaluate the effectiveness of different visual patterns and different display shapes. We found that the easiest to align shape was the spherical display and the best calibration pattern was the combination of circles and lines. We performed a quantitative camera-based calibration of a cubic display and found visual calibration outperformed manual tuning and generated viewpoint calibrations accurate to within a degree. Our work removes the usual, burdensome step of manual calibration when using head-tracked displays and paves the way for wider adoption of this inexpensive and effective 3D display technology.

[1]  Kellogg S. Booth,et al.  Evaluating 3D task performance for fish tank virtual worlds , 1993, TOIS.

[2]  Aditi Majumder,et al.  Automatic Registration of Multi‐Projector Domes Using a Single Uncalibrated Camera , 2011, Comput. Graph. Forum.

[3]  Makoto Hashizume,et al.  A Rapid Method for Magnetic Tracker Calibration Using a Magneto-Optic Hybrid Tracker , 2003, MICCAI.

[4]  Robert J. Teather,et al.  Pointing at 3d target projections with one-eyed and stereo cursors , 2013, CHI.

[5]  Nassir Navab,et al.  Single point active alignment method (SPAAM) for optical see-through HMD calibration for AR , 2000, Proceedings IEEE and ACM International Symposium on Augmented Reality (ISAR 2000).

[6]  Sidney S. Fels,et al.  Analysis and Practical Minimization of Registration Error in a Spherical Fish Tank Virtual Reality System , 2016, ACCV.

[7]  Sidney S. Fels,et al.  Automatic Calibration of a Multiple-Projector Spherical Fish Tank VR Display , 2017, 2017 IEEE Winter Conference on Applications of Computer Vision (WACV).

[8]  Daniel J. Sandin,et al.  Line of Sight Method for Tracker Calibration in Projection-Based VR Systems , 1998 .

[9]  Masahiko Inami Media3: the virtual hologram , 1997, SIGGRAPH '97.

[10]  Volodymyr V. Kindratenko,et al.  A survey of electromagnetic position tracker calibration techniques , 2005, Virtual Reality.

[11]  Kristian M O'Connor,et al.  Validation of a single camera three-dimensional motion tracking system. , 2010, Journal of biomechanics.

[12]  K. S. Arun,et al.  Least-Squares Fitting of Two 3-D Point Sets , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[13]  Christian Sandor,et al.  Subjective Evaluation of a Semi-Automatic Optical See-Through Head-Mounted Display Calibration Technique , 2015, IEEE Transactions on Visualization and Computer Graphics.

[14]  John G. Hagedorn,et al.  Correction of Location and Orientation Errors in Electromagnetic Motion Tracking , 2007, PRESENCE: Teleoperators and Virtual Environments.

[15]  King-Sun Fu,et al.  IEEE Transactions on Pattern Analysis and Machine Intelligence Publication Information , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[16]  Richard L. Holloway,et al.  Registration Error Analysis for Augmented Reality , 1997, Presence: Teleoperators & Virtual Environments.

[17]  Michael Gervautz,et al.  Camera based beacon tracking: accuracy and applications , 1996, VRST.

[18]  Sidney S. Fels,et al.  pCubee: a perspective-corrected handheld cubic display , 2010, CHI.

[19]  Francisco José Madrid-Cuevas,et al.  Automatic generation and detection of highly reliable fiducial markers under occlusion , 2014, Pattern Recognit..

[20]  C. J. Overbeeke,et al.  Cubby : a multiscreen movement parallax display for direct manual manipulation , 1997 .

[21]  Dieter Schmalstieg,et al.  Fast calibration for augmented reality , 1999, VRST '99.

[22]  Roel Vertegaal,et al.  TeleHuman: effects of 3d perspective on gaze and pose estimation with a life-size cylindrical telepresence pod , 2012, CHI.

[23]  Andrea Torsello,et al.  Design and Evaluation of a Viewer-Dependent Stereoscopic Display , 2014, 2014 22nd International Conference on Pattern Recognition.

[24]  Joseph J. LaViola,et al.  Dynamic Stereoscopic 3D Parameter Adjustment for Enhanced Depth Discrimination , 2016, CHI.

[25]  Yichen Tang,et al.  Kinect-based augmented reality projection with perspective correction , 2011, SIGGRAPH '11.

[26]  Kellogg S. Booth,et al.  Fish tank virtual reality , 1993, INTERCHI.

[27]  Ronald Azuma,et al.  Improving static and dynamic registration in an optical see-through HMD , 1994, SIGGRAPH.

[28]  Hirokazu Kato,et al.  Marker tracking and HMD calibration for a video-based augmented reality conferencing system , 1999, Proceedings 2nd IEEE and ACM International Workshop on Augmented Reality (IWAR'99).

[29]  Joseph J. LaViola,et al.  Evaluating performance benefits of head tracking in modern video games , 2013, SUI '13.

[30]  Roel Vertegaal,et al.  SnowGlobe: a spherical fish-tank VR display , 2011, CHI Extended Abstracts.

[31]  Gudrun Klinker,et al.  Corneal-Imaging Calibration for Optical See-Through Head-Mounted Displays , 2015, IEEE Transactions on Visualization and Computer Graphics.

[32]  Ulrich Neumann,et al.  Dynamic registration correction in video-based augmented reality systems , 1995, IEEE Computer Graphics and Applications.

[33]  Christoph W. Borst Tracker calibration using tetrahedral mesh and tricubic spline models of warp , 2004, IEEE Virtual Reality 2004.

[34]  Christian Geiger,et al.  Flexible Registration of Multiple Displays , 2014, PerDis.

[35]  Carolina Cruz-Neira,et al.  Surround-Screen Projection-Based Virtual Reality: The Design and Implementation of the CAVE , 2023 .

[36]  David Kim,et al.  HoloDesk: direct 3d interactions with a situated see-through display , 2012, CHI.

[37]  Marcelo Knörich Zuffo,et al.  Spheree: a 3D perspective-corrected interactive spherical scalable display , 2014, SIGGRAPH '14.

[38]  Andrew Hogue,et al.  The Hedgehog: A Novel Optical Tracking Method for Spatially Immersive Displays , 2006, Presence: Teleoperators & Virtual Environments.