Collaboration and Competition Process: A Multi-Teams and Genetic Algorithm Hybrid Approach

The hybridization of genetic algorithms and the simplex method have been proven in literature as useful and promising in optimizations. Therefore, this paper proposes a multi-teams genetic-algorithm (MT-GA) hybrid developed toward extending the previous simplex-GA hybrids. The approach utilizes the simplex method as a united team and multi-teams collaboration and also competition search process in conjunction with the GAs. It is designed such that it has multi-teams with self-evolution (parallel applications of the simplex method), multi-teams communication and even mutual stimulation, and multi-teams survival competition as well as non-elite team breakup for individual relearning (with GAs) and re-forming the new teams. The extension of multi-teams GA thus provides the advantages and as previous simplex-GAs has been proved to outperform a number of other approaches. The experiments in this research show that the MT-GA generally outperforms the existing simplex-GAs for the indices of convergence rate (CPU time required), efficiency (number of function evaluations), and effectiveness (accuracy). Also, a further functional experiment of the MT-GA shows that the MT-GA can be a useful improved algorithm for the function optimization problems.

[1]  Alain Pétrowski,et al.  A clearing procedure as a niching method for genetic algorithms , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.

[2]  Christopher W. Wilson,et al.  Genetic algorithms for optimisation of chemical kinetics reaction mechanisms , 2004 .

[3]  Alan S. Perelson,et al.  Searching for Diverse, Cooperative Populations with Genetic Algorithms , 1993, Evolutionary Computation.

[4]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[5]  Rajarshi Das,et al.  A Study of Control Parameters Affecting Online Performance of Genetic Algorithms for Function Optimization , 1989, ICGA.

[6]  L. Luo,et al.  Thermal analysis for indirect liquid cooled multichip module using computational fluid dynamic simulation and response surface methodology , 2006, IEEE Transactions on Components and Packaging Technologies.

[7]  Melanie Mitchell,et al.  An introduction to genetic algorithms , 1996 .

[8]  Singiresu S. Rao Engineering Optimization : Theory and Practice , 2010 .

[9]  P. Das,et al.  Improved response surface method and its application to stiffened plate reliability analysis , 2000 .

[10]  John W. Hartmann,et al.  OPTIMAL INTERPLANETARY SPACECRAFT TRAJECTORIES VIA A PARETO GENETIC ALGORITHM , 1998 .

[11]  David G. Mayer,et al.  Robust parameter settings of evolutionary algorithms for the optimisation of agricultural systems models , 2001 .

[12]  Patrick Siarry,et al.  Genetic and Nelder-Mead algorithms hybridized for a more accurate global optimization of continuous multiminima functions , 2003, Eur. J. Oper. Res..

[13]  G. Froment,et al.  A hybrid genetic algorithm for the estimation of parameters in detailed kinetic models , 1998 .

[14]  N. R. Chapman,et al.  A hybrid simplex genetic algorithm for estimating geoacoustic parameters using matched-field inversion , 1999 .

[15]  Lloyd A. Smith,et al.  Optimisation techniques for a computer simulation of a pastoral dairy farm , 1998 .

[16]  I. Douglas,et al.  Simple Genetic Algorithm with Local Tuning: Efficient Global Optimizing Technique , 1998 .

[17]  V. Rao Vemuri,et al.  Analysis of Speciation and Niching in the Multi-Niche Crowding GA , 1999, Theor. Comput. Sci..

[18]  Mei Zhao,et al.  A niche hybrid genetic algorithm for global optimization of continuous multimodal functions , 2005, Appl. Math. Comput..

[19]  Hideo Tanaka,et al.  Genetic algorithms and neighborhood search algorithms for fuzzy flowshop scheduling problems , 1994 .

[20]  W. Hsu,et al.  Handbook of Research on Computational Methodologies in Gene Regulatory Networks , 2009 .

[21]  Rong-Song He,et al.  A hybrid real-parameter genetic algorithm for function optimization , 2006, Adv. Eng. Informatics.

[22]  Edwin R. Hancock,et al.  Genetic algorithm parameter sets for line labelling , 1997, Pattern Recognit. Lett..

[23]  M. Fukushima,et al.  Minimizing multimodal functions by simplex coding genetic algorithm , 2003 .

[24]  Pini Gurfil,et al.  Characterization and design of out-of-ecliptic trajectories using deterministic crowding genetic algorithms , 2002 .

[25]  G. R. Hext,et al.  Sequential Application of Simplex Designs in Optimisation and Evolutionary Operation , 1962 .

[26]  C. F. Jeff Wu,et al.  Experiments: Planning, Analysis, and Parameter Design Optimization , 2000 .

[27]  David Rogers,et al.  G/SPLINES: A Hybrid of Friedman's Multivariate Adaptive Regression Splines (MARS) Algorithm with Holland's Genetic Algorithm , 1991, ICGA.

[28]  C.-Y. Lin,et al.  HYBRID MULTIMODAL OPTIMIZATION WITH CLUSTERING GENETIC STRATEGIES , 1998 .

[29]  Xianggui Qu,et al.  One-factor-at-a-time designs of resolution V , 2005 .

[30]  Patrick Siarry,et al.  A multipopulation genetic algorithm aimed at multimodal optimization , 2002 .

[31]  David E. Goldberg,et al.  Genetic Algorithms with Sharing for Multimodalfunction Optimization , 1987, ICGA.

[32]  Akira Todoroki,et al.  Design of experiments for stacking sequence optimizations with genetic algorithm using response surface approximation , 2004 .

[33]  Nikolaus Hansen,et al.  Completely Derandomized Self-Adaptation in Evolution Strategies , 2001, Evolutionary Computation.

[34]  L. Buydens,et al.  Determination of optimal support vector regression parameters by genetic algorithms and simplex optimization , 2005 .

[35]  Lester Ingber,et al.  Simulated annealing: Practice versus theory , 1993 .

[36]  Michael D. Vose,et al.  The simple genetic algorithm - foundations and theory , 1999, Complex adaptive systems.

[37]  Samir W. Mahfoud Crossover interactions among niches , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[38]  Kalyanmoy Deb,et al.  An Investigation of Niche and Species Formation in Genetic Function Optimization , 1989, ICGA.

[39]  Zbigniew Michalewicz,et al.  Parameter control in evolutionary algorithms , 1999, IEEE Trans. Evol. Comput..

[40]  Kenneth Alan De Jong,et al.  An analysis of the behavior of a class of genetic adaptive systems. , 1975 .

[41]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[42]  Ping-Teng Chang,et al.  Modelling of job-shop scheduling with multiple quantitative and qualitative objectives and a GA/TS mixture approach , 2001, Int. J. Comput. Integr. Manuf..

[43]  Leandro Nunes de Castro,et al.  Nature-Inspired Computing Design, Development, and Applications , 2012 .

[44]  Wagner F. Sacco,et al.  The fuzzy clearing approach for a niching genetic algorithm applied to a nuclear reactor core design optimization problem , 2004 .

[45]  Zbigniew Michalewicz,et al.  An Experimental Comparison of Binary and Floating Point Representations in Genetic Algorithms , 1991, ICGA.

[46]  Bruno Sareni,et al.  Fitness sharing and niching methods revisited , 1998, IEEE Trans. Evol. Comput..

[47]  John Yen,et al.  A hybrid approach to modeling metabolic systems using a genetic algorithm and simplex method , 1998, IEEE Trans. Syst. Man Cybern. Part B.

[48]  Xiaodong Yin,et al.  A Fast Genetic Algorithm with Sharing Scheme Using Cluster Analysis Methods in Multimodal Function Optimization , 1993 .

[49]  Kalyanmoy Deb,et al.  A Computationally Efficient Evolutionary Algorithm for Real-Parameter Optimization , 2002, Evolutionary Computation.

[50]  Henryk Fuks,et al.  Response Curves for Cellular Automata in One and Two Dimensions: An Example of Rigorous Calculations , 2010, Int. J. Nat. Comput. Res..

[51]  Hai Lin,et al.  Hybrid simplex genetic algorithm for blind equalization using RBF networks , 2002, Math. Comput. Simul..

[52]  Robert I. McKay Variants of genetic programming for species distribution modelling — fitness sharing, partial functions, population evaluation , 2001 .

[53]  John J. Grefenstette,et al.  Optimization of Control Parameters for Genetic Algorithms , 1986, IEEE Transactions on Systems, Man, and Cybernetics.

[54]  J. Pollack,et al.  A game-theoretic investigation of selection methods used in evolutionary algorithms , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).

[55]  Chien-Min Lin,et al.  A hybrid genetic algorithm for the re-entrant flow-shop scheduling problem , 2008, Expert Syst. Appl..

[56]  L. Liebovitch,et al.  Determining the Properties of Gene Regulatory Networks from Expression Data , 2009 .

[57]  Lothar M. Schmitt,et al.  Theory of genetic algorithms , 2001, Theor. Comput. Sci..

[58]  Tai-Yue Wang,et al.  A parameter set design procedure for the simulated annealing algorithm under the computational time constraint , 1999, Comput. Oper. Res..

[59]  Hisao Ishibuchi,et al.  A multi-objective genetic local search algorithm and its application to flowshop scheduling , 1998, IEEE Trans. Syst. Man Cybern. Part C.

[60]  Selim G. Akl,et al.  Trans-Canada Slimeways: Slime Mould Imitates the Canadian Transport Network , 2011, Int. J. Nat. Comput. Res..

[61]  Jean-Michel Renders,et al.  Hybridizing genetic algorithms with hill-climbing methods for global optimization: two possible ways , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[62]  Stelios D. Georgiou,et al.  New two-variable full orthogonal designs and related experiments with linear regression models , 2007 .

[63]  Mauricio G. C. Resende,et al.  Designing and reporting on computational experiments with heuristic methods , 1995, J. Heuristics.

[64]  Hideo Tanaka,et al.  Genetic algorithms for flowshop scheduling problems , 1996 .

[65]  Jean-Philippe Rennard,et al.  Handbook of Research on Nature-inspired Computing for Economics and Management , 2006 .

[66]  C.-Y. Lin,et al.  Niche identification techniques in multimodal genetic search with sharing scheme , 2002 .

[67]  James E. Baker,et al.  Adaptive Selection Methods for Genetic Algorithms , 1985, International Conference on Genetic Algorithms.

[68]  Barry Hilary Valentine Topping,et al.  Improved genetic operators for structural engineering optimization , 1998 .

[69]  Abdelaziz Bouroumi,et al.  A fuzzy clustering-based niching approach to multimodal function optimization , 2000, Cognitive Systems Research.

[70]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .