On the characterization of statistically synchronizable variable-length codes

The authors consider statistically synchronizable variable-length codes, i.e. codes that admit decoders able to self-synchronize with high probability if the input sequence of code symbols is long enough. They show that a necessary and sufficient condition for the existence of a statistically self-synchronizing decoder and, therefore, for a code to be statistically synchronizable, is that the code has a synchronizing sequence. They also give a decision procedure to test whether a code has a synchronizing sequence. Finally, they specialize the procedure to obtain a simple and efficient algorithm to test the statistical synchronizability property of prefix codes. >

[1]  Marcel Paul Schützenberger,et al.  On Synchronizing Prefix Codes , 1967, Inf. Control..

[2]  M. Schützenberger,et al.  The equation $a^M=b^Nc^P$ in a free group. , 1962 .

[3]  Basil Gordon,et al.  Codes With Bounded Synchronization Delay , 1965, Inf. Control..

[4]  Vladimir I. Levenshtein Certain Properties of Code Systems , 1962 .

[5]  Robert A. Scholtz,et al.  Mechanization of codes with bounded synchronization delays , 1970, IEEE Trans. Inf. Theory.

[6]  John A. Riley The Sardinas/Patterson and Levenshtein Theorem , 1967, Inf. Control..

[7]  E. F. Moore,et al.  Variable-length binary encodings , 1959 .

[8]  Shimon Even,et al.  Test for synchronizability of finite automata and variable length codes , 1964, IEEE Trans. Inf. Theory.

[9]  Marcel Paul Schützenberger,et al.  On the Synchronizing Properties of Certain Prefix Codes , 1964, Inf. Control..

[10]  Edgar N. Gilbert,et al.  Synchronization of binary messages , 1960, IRE Trans. Inf. Theory.

[11]  Settimo Termini,et al.  Synchronization and simplification , 1979, Discret. Math..

[12]  Robert A. Scholtz Codes with synchronization capability , 1966, IEEE Trans. Inf. Theory.

[13]  Marcel Paul Schützenberger,et al.  ON an APPIICATICN , 1998 .

[14]  Antonio Restivo,et al.  A Combinatorial Property of Codes Having Finite Synchronization Delay , 1975, Theor. Comput. Sci..

[15]  Thomas J. Ferguson,et al.  Self-synchronizing Huffman codes , 1984, IEEE Trans. Inf. Theory.

[16]  Renato M. Capocelli A note on uniquely decipherable codes (Corresp.) , 1979, IEEE Trans. Inf. Theory.

[17]  Antonio Restivo,et al.  A Characterization of Strictly Locally Testable Languages and Its Applications to Subsemigroups of a Free Semigroup , 1980, Inf. Control..

[18]  Peter G. Neumann,et al.  Efficient error-limiting variable-length codes , 1962, IRE Trans. Inf. Theory.

[19]  Robert A. Scholtz,et al.  Block codes for statistical synchronization , 1970, IEEE Trans. Inf. Theory.

[20]  Ján Cerný,et al.  On directable automata , 1971, Kybernetika (Praha).

[21]  Alfred V. Aho,et al.  Efficient string matching , 1975, Commun. ACM.

[22]  Antonio Restivo,et al.  On Some Properties of Local Testability , 1980, International Colloquium on Automata, Languages and Programming.

[23]  Robert A. Scholtz,et al.  On the characterization of statistically synchronizable codes (Corresp.) , 1980, IEEE Trans. Inf. Theory.

[24]  Julia Abrahams,et al.  Synchronization of binary source codes , 1986, IEEE Trans. Inf. Theory.

[25]  Antonio Restivo,et al.  Synchronization and Maximality for Very Pure Subsemigroups of a Free Semigroup , 1979, MFCS.

[26]  Antonio Restivo,et al.  A synchronization property of pure subsemigroups of a free semigroup , 1981 .

[27]  M. Schutzenberger,et al.  On an application of semi groups methods to some problems in coding , 1956 .

[28]  Christoph M. Hoffmann A Note on Unique Decipherability , 1984, MFCS.