A Compressed Sensing Analog-to-Information Converter With Edge-Triggered SAR ADC Core

This paper presents the design and implementation of an analog-to-information converter (AIC) capable of Nyquist and compressed sensing modes of operation. The core of the AIC is a 10-bit edge-triggered charge-sharing SAR ADC with a figure of merit (FOM) of 55 fJ/conversion-step and Nyquist-sampling rate of 9.5 Msample/s. The integration of a pseudorandom clock generator enables compressed sensing operation via random sampling and subsequent asynchronous successive approximation conversion by the core ADC. The AIC allows complete reconstruction of a spectrum consisting of sparse single tones or sparse frequency bands using compressed sensing algorithms based on ℓ1-minimization as well as ℓ1,2 regularization, which exploits group sparsity. Implemented in 90 nm CMOS, the prototype SAR ADC core achieves a maximum sample rate of 9.5 MS/s, an ENOB of 9.3 bits, and consumes 550 μW from a 1.2 V supply. Measurement results of the AIC demonstrate an effective bandwidth of 25 MHz, which is 5 × greater than Nyquist-sampling rate with an improved effective FOM of 12.2 fJ/conversion-step for signals with sparse frequency support.

[1]  Emmanuel J. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[2]  Vladimir Stojanovic,et al.  A signal-agnostic compressed sensing acquisition system for wireless and implantable sensors , 2010, IEEE Custom Integrated Circuits Conference 2010.

[3]  J. Tropp Algorithms for simultaneous sparse approximation. Part II: Convex relaxation , 2006, Signal Process..

[4]  E.J. Candes Compressive Sampling , 2022 .

[5]  Sergiy A. Vorobyov,et al.  Segmented Compressed Sampling for Analog-to-Information Conversion: Method and Performance Analysis , 2010, IEEE Transactions on Signal Processing.

[6]  E. Candes,et al.  11-magic : Recovery of sparse signals via convex programming , 2005 .

[7]  Justin K. Romberg,et al.  Beyond Nyquist: Efficient Sampling of Sparse Bandlimited Signals , 2009, IEEE Transactions on Information Theory.

[8]  J. Haupt,et al.  A Nyquist folding analog-to-information receiver , 2008, 2008 42nd Asilomar Conference on Signals, Systems and Computers.

[9]  Eric A. M. Klumperink,et al.  A 1.9μW 4.4fJ/Conversion-step 10b 1MS/s Charge-Redistribution ADC , 2008, 2008 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[10]  E.J. Candes,et al.  An Introduction To Compressive Sampling , 2008, IEEE Signal Processing Magazine.

[11]  Richard G. Baraniuk,et al.  Compressive Sensing , 2008, Computer Vision, A Reference Guide.

[12]  Joel A. Tropp,et al.  Signal Recovery From Random Measurements Via Orthogonal Matching Pursuit , 2007, IEEE Transactions on Information Theory.

[13]  S. Kirolos,et al.  Analog-to-Information Conversion via Random Demodulation , 2006, 2006 IEEE Dallas/CAS Workshop on Design, Applications, Integration and Software.

[14]  David L Donoho,et al.  Compressed sensing , 2006, IEEE Transactions on Information Theory.

[15]  D.J. Brady,et al.  Compression at the Physical Interface , 2008, IEEE Signal Processing Magazine.

[16]  Anna C. Gilbert,et al.  An analog-to-information converter for wideband signals using a time encoding machine , 2011, 2011 Digital Signal Processing and Signal Processing Education Meeting (DSP/SPE).

[17]  S. Kirolos,et al.  Random Sampling for Analog-to-Information Conversion of Wideband Signals , 2006, 2006 IEEE Dallas/CAS Workshop on Design, Applications, Integration and Software.

[18]  Marco F. Duarte,et al.  Spectral compressive sensing , 2013 .

[19]  Emmanuel J. Candès,et al.  Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies? , 2004, IEEE Transactions on Information Theory.

[20]  Shuchin Aeron,et al.  A Compressed sensing analog-to-information converter with edge-triggered SAR ADC Core , 2012, 2012 IEEE International Symposium on Circuits and Systems.

[21]  Ting Sun,et al.  Single-pixel imaging via compressive sampling , 2008, IEEE Signal Process. Mag..

[22]  A. Robert Calderbank,et al.  Sensitivity to Basis Mismatch in Compressed Sensing , 2010, IEEE Transactions on Signal Processing.

[23]  P. R. Gray,et al.  A 1.5-V, 10-bit, 14.3-MS/s CMOS pipeline analog-to-digital converter , 1999, IEEE J. Solid State Circuits.

[24]  Emmanuel J. Candès,et al.  Decoding by linear programming , 2005, IEEE Transactions on Information Theory.

[25]  Jan Craninckx,et al.  A 65fJ/Conversion-Step 0-to-50MS/s 0-to-0.7mW 9b Charge-Sharing SAR ADC in 90nm Digital CMOS , 2007, 2007 IEEE International Solid-State Circuits Conference. Digest of Technical Papers.

[26]  Christian Vogel,et al.  The impact of combined channel mismatch effects in time-interleaved ADCs , 2005, IEEE Transactions on Instrumentation and Measurement.

[27]  Yonina C. Eldar,et al.  From Theory to Practice: Sub-Nyquist Sampling of Sparse Wideband Analog Signals , 2009, IEEE Journal of Selected Topics in Signal Processing.

[28]  Tzyy-Ping Jung,et al.  Compressed Sensing for Energy-Efficient Wireless Telemonitoring of Noninvasive Fetal ECG Via Block Sparse Bayesian Learning , 2012, IEEE Transactions on Biomedical Engineering.

[29]  Michael P. Friedlander,et al.  Probing the Pareto Frontier for Basis Pursuit Solutions , 2008, SIAM J. Sci. Comput..