Unbounded number of channel uses may be required to detect quantum capacity
暂无分享,去创建一个
David Elkouss | David Pérez-García | Sergii Strelchuk | Maris Ozols | Toby Cubitt | William Matthews | W. Matthews | D. Pérez-García | David Elkouss | T. Cubitt | M. Ozols | S. Strelchuk | Sergii Strelchuk
[1] J. Smolin,et al. Degenerate quantum codes for Pauli channels. , 2006, Physical review letters.
[2] R F Werner,et al. Hiding classical data in multipartite quantum states. , 2002, Physical review letters.
[3] M. Ruskai,et al. The structure of degradable quantum channels , 2008, 0802.1360.
[4] M. Fannes,et al. Continuity of quantum conditional information , 2003, quant-ph/0312081.
[5] M. Hastings. Superadditivity of communication capacity using entangled inputs , 2009 .
[6] S. Lloyd. Capacity of the noisy quantum channel , 1996, quant-ph/9604015.
[7] W. Wootters,et al. A single quantum cannot be cloned , 1982, Nature.
[8] Robert B. Ash,et al. Information Theory , 2020, The SAGE International Encyclopedia of Mass Media and Society.
[9] Michal Horodecki,et al. General Paradigm for Distilling Classical Key From Quantum States , 2009, IEEE Transactions on Information Theory.
[10] John Watrous. Many Copies May Be Required for Entanglement Distillation , 2004 .
[11] Michal Horodecki,et al. Binding entanglement channels , 1999, quant-ph/9904092.
[12] M. Wolf,et al. Simplifying additivity problems using direct sum constructions , 2007, 0704.1092.
[13] M. Horodecki,et al. Mixed-State Entanglement and Distillation: Is there a “Bound” Entanglement in Nature? , 1998, quant-ph/9801069.
[14] Graeme Smith,et al. An Extreme Form of Superactivation for Quantum Zero-Error Capacities , 2009, IEEE Transactions on Information Theory.
[15] Fernando G S L Brandão,et al. When does noise increase the quantum capacity? , 2012, Physical review letters.
[16] P. Shor,et al. QUANTUM-CHANNEL CAPACITY OF VERY NOISY CHANNELS , 1997, quant-ph/9706061.
[17] Mark M. Wilde,et al. Quantum Information Theory , 2013 .
[18] Graeme Smith,et al. Quantum Communication with Zero-Capacity Channels , 2008, Science.
[19] Andreas J. Winter,et al. Counterexamples to the Maximal p-Norm Multiplicativity Conjecture for all p > 1 , 2008, ArXiv.
[20] Jonathan Oppenheim. For Quantum Information, Two Wrongs Can Make a Right , 2008, Science.
[21] Jianxin Chen,et al. Superactivation of the Asymptotic Zero-Error Classical Capacity of a Quantum Channel , 2009, IEEE Transactions on Information Theory.
[22] C. H. Bennett,et al. Capacities of Quantum Erasure Channels , 1997, quant-ph/9701015.
[23] Igor Devetak. The private classical capacity and quantum capacity of a quantum channel , 2005, IEEE Transactions on Information Theory.
[24] Noga Alon,et al. The Shannon Capacity of a Union , 1998, Comb..
[25] A. Harrow,et al. Entanglement can completely defeat quantum noise. , 2011, Physical review letters.
[26] A. Montanaro. Weak Multiplicativity for Random Quantum Channels , 2011, Communications in Mathematical Physics.