Crystal structure of plant vacuolar iron transporter VIT1

[1]  K. Hirata,et al.  KAMO: towards automated data processing for microcrystals , 2018, Acta crystallographica. Section D, Structural biology.

[2]  J. Balk,et al.  Wheat Vacuolar Iron Transporter TaVIT2 Transports Fe and Mn and Is Effective for Biofortification1[OPEN] , 2017, Plant Physiology.

[3]  R. Dutzler,et al.  Structural and mechanistic basis of proton-coupled metal ion transport in the SLC11/NRAMP family , 2017, Nature Communications.

[4]  J. Weiner,et al.  Phylogenetic profiles of all membrane transport proteins of the malaria parasite highlight new drug targets , 2016, Microbial cell.

[5]  K. Schulten,et al.  Conserved methionine dictates substrate preference in Nramp-family divalent metal transporters , 2016, Proceedings of the National Academy of Sciences.

[6]  K. Dietz,et al.  Vacuolar compartmentalization as indispensable component of heavy metal detoxification in plants. , 2016, Plant, cell & environment.

[7]  Y. Tsuji,et al.  Regulators of Iron Homeostasis: New Players in Metabolism, Cell Death, and Disease. , 2016, Trends in biochemical sciences.

[8]  M. Mota,et al.  A vacuolar iron-transporter homologue acts as a detoxifier in Plasmodium , 2016, Nature Communications.

[9]  G. Beyene,et al.  Overexpression of Arabidopsis VIT1 increases accumulation of iron in cassava roots and stems. , 2015, Plant science : an international journal of experimental plant biology.

[10]  O. Nureki,et al.  Outward- and inward-facing structures of a putative bacterial transition-metal transporter with homology to ferroportin , 2015, Nature Communications.

[11]  H. Steur,et al.  Status and market potential of transgenic biofortified crops , 2015, Nature Biotechnology.

[12]  T. Rouault Mammalian iron–sulphur proteins: novel insights into biogenesis and function , 2014, Nature Reviews Molecular Cell Biology.

[13]  J. Mindell,et al.  Thermodynamic evidence for a dual transport mechanism in a POT peptide transporter , 2014, eLife.

[14]  R. Dutzler,et al.  Crystal structure of a SLC11 (NRAMP) transporter reveals the basis for transition-metal ion transport , 2014, Nature Structural &Molecular Biology.

[15]  W. Schmidt,et al.  Vacuolar-Iron-Transporter1-Like Proteins Mediate Iron Homeostasis in Arabidopsis , 2014, PloS one.

[16]  Caiguo Zhang Essential functions of iron-requiring proteins in DNA replication, repair and cell cycle control , 2014, Protein & Cell.

[17]  S. Mongkolsuk,et al.  Roles of Agrobacterium tumefaciens membrane-bound ferritin (MbfA) in iron transport and resistance to iron under acidic conditions. , 2014, Microbiology.

[18]  J. Balk,et al.  Iron cofactor assembly in plants. , 2014, Annual review of plant biology.

[19]  J. Abadía,et al.  Metal species involved in long distance metal transport in plants , 2014, Front. Plant Sci..

[20]  E. L. Connolly,et al.  The diverse roles of FRO family metalloreductases in iron and copper homeostasis , 2014, Front. Plant Sci..

[21]  P. Pimpl,et al.  Organelle pH in the Arabidopsis endomembrane system. , 2013, Molecular plant.

[22]  Yigong Shi Common folds and transport mechanisms of secondary active transporters. , 2013, Annual review of biophysics.

[23]  S. Iwata,et al.  Clustering procedures for the optimal selection of data sets from multiple crystals in macromolecular crystallography , 2012, Acta crystallographica. Section D, Biological crystallography.

[24]  Yongli Xu,et al.  Vacuolar membrane transporters OsVIT1 and OsVIT2 modulate iron translocation between flag leaves and seeds in rice. , 2012, The Plant journal : for cell and molecular biology.

[25]  M. F. White,et al.  Iron-sulphur clusters in nucleic acid processing enzymes. , 2012, Current opinion in structural biology.

[26]  G. Sheldrick,et al.  ANODE: anomalous and heavy-atom density calculation , 2011, Journal of applied crystallography.

[27]  N. Pannu,et al.  REFMAC5 for the refinement of macromolecular crystal structures , 2011, Acta crystallographica. Section D, Biological crystallography.

[28]  L. Forrest,et al.  The structural basis of secondary active transport mechanisms. , 2011, Biochimica et biophysica acta.

[29]  Jan H. Jensen,et al.  Graphical analysis of pH-dependent properties of proteins predicted using PROPKA , 2011, BMC Structural Biology.

[30]  Xiaole Kong,et al.  Chemistry and biology of siderophores. , 2010, Natural product reports.

[31]  P. Emsley,et al.  Features and development of Coot , 2010, Acta crystallographica. Section D, Biological crystallography.

[32]  Mary Lou Guerinot,et al.  Iron uptake and transport in plants: the good, the bad, and the ionome. , 2009, Chemical reviews.

[33]  M. Caffrey Crystallizing membrane proteins for structure determination: use of lipidic mesophases. , 2009, Annual review of biophysics.

[34]  C. Curie,et al.  Metal movement within the plant: contribution of nicotianamine and yellow stripe 1-like transporters. , 2009, Annals of botany.

[35]  G. Sheldrick A short history of SHELX. , 2008, Acta crystallographica. Section A, Foundations of crystallography.

[36]  N. Andrews,et al.  Iron homeostasis. , 2007, Annual review of physiology.

[37]  Jerry Kaplan,et al.  Localization of Iron in Arabidopsis Seed Requires the Vacuolar Membrane Transporter VIT1 , 2006, Science.

[38]  Eric Gouaux,et al.  Fluorescence-detection size-exclusion chromatography for precrystallization screening of integral membrane proteins. , 2006, Structure.

[39]  P. D. Adams,et al.  Xtriage and Fest : automatic assessment of X-ray data and substructure structure factor estimation , 2005 .

[40]  Randy J Read,et al.  Electronic Reprint Biological Crystallography Phenix: Building New Software for Automated Crystallographic Structure Determination Biological Crystallography Phenix: Building New Software for Automated Crystallographic Structure Determination , 2022 .

[41]  George M Sheldrick,et al.  Substructure solution with SHELXD. , 2002, Acta crystallographica. Section D, Biological crystallography.

[42]  Jerry Kaplan,et al.  CCC1 Is a Transporter That Mediates Vacuolar Iron Storage in Yeast* , 2001, The Journal of Biological Chemistry.

[43]  J. Boeke,et al.  Designer deletion strains derived from Saccharomyces cerevisiae S288C: A useful set of strains and plasmids for PCR‐mediated gene disruption and other applications , 1998, Yeast.

[44]  H. Beinert,et al.  Iron-sulfur clusters: nature's modular, multipurpose structures. , 1997, Science.

[45]  G. Bricogne,et al.  [27] Maximum-likelihood heavy-atom parameter refinement for multiple isomorphous replacement and multiwavelength anomalous diffraction methods. , 1997, Methods in enzymology.

[46]  M. Guerinot,et al.  Iron: Nutritious, Noxious, and Not Readily Available , 1994, Plant physiology.

[47]  S. Aust,et al.  Role of metals in oxygen radical reactions. , 1985, Journal of free radicals in biology & medicine.

[48]  E. Nieboer,et al.  The replacement of the nondescript term ‘heavy metals’ by a biologically and chemically significant classification of metal ions , 1980 .