A note on noninformative priors for Weibull distributions

[1]  L. Wasserman,et al.  The Selection of Prior Distributions by Formal Rules , 1996 .

[2]  G. Datta On priors providing frequentist validity of Bayesian inference for multiple parametric functions , 1996 .

[3]  Keying Ye,et al.  Frequentist validity of posterior quantiles for a two-parameter exponential family , 1996 .

[4]  Malay Ghosh,et al.  ON THE INVARIANCE OF NONINFORMATIVE PRIORS , 1996 .

[5]  Dongchu Sun Integrable Expansions for Posterior Distributions for a Two-Parameter Exponential Family , 1994 .

[6]  D. Dey,et al.  Frequentist validity of posterior quantiles in the presence of a nuisance parameter : higher order asymptotics , 1993 .

[7]  J. Ghosh,et al.  On priors that match posterior and frequentist distribution functions , 1993 .

[8]  R. Tibshirani Noninformative priors for one parameter of many , 1989 .

[9]  James O. Berger,et al.  Estimating a Product of Means: Bayesian Analysis with Reference Priors , 1989 .

[10]  B. Reiser,et al.  An Exponential Subfamily which Admits UMPU Tests Based on a Single Test Statistic , 1982 .

[11]  H. Martz Bayesian reliability analysis , 1982 .

[12]  J. Bernardo Reference Posterior Distributions for Bayesian Inference , 1979 .

[13]  Peter L. Balise,et al.  Introduction to partial differential equations and boundary value problems , 1968 .

[14]  H. W. Peers On Confidence Points and Bayesian Probability Points in the Case of Several Parameters , 1965 .

[15]  B. L. Welch,et al.  On Formulae for Confidence Points Based on Integrals of Weighted Likelihoods , 1963 .

[16]  H. Jeffreys The Theory of Probability , 1896 .