A note on noninformative priors for Weibull distributions
暂无分享,去创建一个
[1] L. Wasserman,et al. The Selection of Prior Distributions by Formal Rules , 1996 .
[2] G. Datta. On priors providing frequentist validity of Bayesian inference for multiple parametric functions , 1996 .
[3] Keying Ye,et al. Frequentist validity of posterior quantiles for a two-parameter exponential family , 1996 .
[4] Malay Ghosh,et al. ON THE INVARIANCE OF NONINFORMATIVE PRIORS , 1996 .
[5] Dongchu Sun. Integrable Expansions for Posterior Distributions for a Two-Parameter Exponential Family , 1994 .
[6] D. Dey,et al. Frequentist validity of posterior quantiles in the presence of a nuisance parameter : higher order asymptotics , 1993 .
[7] J. Ghosh,et al. On priors that match posterior and frequentist distribution functions , 1993 .
[8] R. Tibshirani. Noninformative priors for one parameter of many , 1989 .
[9] James O. Berger,et al. Estimating a Product of Means: Bayesian Analysis with Reference Priors , 1989 .
[10] B. Reiser,et al. An Exponential Subfamily which Admits UMPU Tests Based on a Single Test Statistic , 1982 .
[11] H. Martz. Bayesian reliability analysis , 1982 .
[12] J. Bernardo. Reference Posterior Distributions for Bayesian Inference , 1979 .
[13] Peter L. Balise,et al. Introduction to partial differential equations and boundary value problems , 1968 .
[14] H. W. Peers. On Confidence Points and Bayesian Probability Points in the Case of Several Parameters , 1965 .
[15] B. L. Welch,et al. On Formulae for Confidence Points Based on Integrals of Weighted Likelihoods , 1963 .
[16] H. Jeffreys. The Theory of Probability , 1896 .