Multi-variate-attribute quality control (MVAQC)

When the number of quality characteristics, in the form of variables or attributes, exceeds unity and there exists a non-zero correlation between them, then one is dealing with either a multivariate or multi-attribute quality control problem. Monitoring these quality characteristics independently can be very misleading. Control charts, as one of the statistical quality control tools, are generally applied for both variable and attribute quality characteristics. In the variable domain, a measurable characteristic of a product or process that affects the quality of the process output is measured and controlled by using variable control charts. In the attribute domain, the number of, or percentage of, defects in products or defective products is calculated and controlled. In multivariate quality control, several dependent variable characteristics are measured and monitored simultaneously. Similarly, in multi-attribute quality control, more than one dependent attribute characteristic is considered simultaneously. From the literature review, all previous works have focused on either multivariate or multi-attribute quality control individually due to differences between the nature of these two concepts. Naturally, variable characteristics follow variable distributions such as the normal distribution. The appearance of these types of distributions is that of a smooth curve. However, attribute characteristics follow discrete distributions like the Binomial and Poisson. The appearance of discrete distributions is that of a series of vertical “spikes” with the height of each spike proportional to the probability. The pattern of these kinds of distributions is discrete and usually with skewness. Nevertheless, it is common for engineers to appeal to the continuous symmetric normal distribution for designing any control charts. Developing a model which is applicable in the multivariate-attribute case as a combination of multivariate and multi-attribute may fill a gap in the tool box available to quality professionals. As an example of where both variable and attribute characteristics may jointly determine the quality of a process, consider a metal forming process with punching and bending operations. Here, the weight and thickness of metal sheet may be i variable characteristics and the shape of the bent sheet and crumpling of the punched hole may be attribute characteristics. The first of the attribute characteristics may be checked with a gauge and the latter checked visually. In this research a new model is developed for quality control in multi-variate-attribute situations. Through this model, the original correlated and skewed quality characteristics are transformed in two steps to a set of uncorrelated and non-skewed variables which can be monitored as individual variables and by using univariate control charts including Shewhart control charts, MCUSUM and EWMA. In the proposed model, the out-ofcontrol states for the transformed variables can be traced back to the original variables to find the responsible one, which is not the case with many of the existing multivariate and multi-attribute methods. Two simulation studies are carried out to analyse the performance of the proposed model and compare it with the leading alternative. These studies clearly show the advantages of this new method, such as being more predictable, more sensitive and easier to understand.

[1]  Douglas M. Hawkins CUMULATIVE SUM CONTROL CHARTING: AN UNDERUTILIZED SPC TOOL , 1993 .

[2]  W. Woodall,et al.  Adapting control charts for the preliminary analysis of multivariate observations , 1998 .

[3]  D. Montgomery,et al.  Contributors to a multivariate statistical process control chart signal , 1996 .

[4]  Marion R. Reynolds,et al.  Multivariate Monitoring Using an MEWMA Control Chart with Unequal Sample Sizes , 2005 .

[5]  Peter A. W. Lewis Generating negatively correlated gamma variates using the Beta-Gamma transformation , 1983, WSC '83.

[6]  Stefan H. Steiner,et al.  Control charts based on grouped observations , 1994 .

[7]  Siripen Larpkiattaworn,et al.  A Neural Network Approach for Multi-Attribute Process Control with Comparison of Two Current Techniques and Guidelines for Practical Use , 2004 .

[8]  G. S. Radford,et al.  The control of quality in manufacturing , 2007 .

[9]  John C. Young,et al.  IMPROVING THE SENSITIVITY OF THE T2 STATISTIC IN MULTIVARIATE PROCESS CONTROL , 1999 .

[10]  Tzvi Raz,et al.  On the construction of control charts using linguistic variables , 1990 .

[11]  James M. Lucas,et al.  The Design and Use of V-Mask Control Schemes , 1976 .

[12]  Song Wheyming Tina,et al.  Generating pseudo-random time series with specified marginal distributions , 1996 .

[13]  James M. Lucas,et al.  Exponentially weighted moving average control schemes: Properties and enhancements , 1990 .

[14]  John C. Young,et al.  THE CONTROL CHART FOR INDIVIDUAL OBSERVATIONS FROM A MULTIVARIATE NON-NORMAL DISTRIBUTION , 2001 .

[15]  James Durbin,et al.  Some methods of constructing exact tests , 1961 .

[16]  G. Runger Multivariate statistical process control for autocorrelated processes , 1996 .

[17]  T. M. Margavio,et al.  A comparison of multivariate moving average control charts for the process mean , 1995 .

[18]  Shane G. Henderson,et al.  Chessboard Distributions and Random Vectors with Specified Marginals and Covariance Matrix , 2002, Oper. Res..

[19]  Stelios Psarakis,et al.  Multivariate statistical process control charts: an overview , 2007, Qual. Reliab. Eng. Int..

[20]  Isaac N. Gibra Economically Optimal Determination of the Parameters of np-Control Charts , 1978 .

[21]  S. W. Roberts,et al.  Control Chart Tests Based on Geometric Moving Averages , 2000, Technometrics.

[22]  H. A. David,et al.  THE DISTRIBUTION OF THE RATIO, IN A SINGLE NORMAL SAMPLE, OF RANGE TO STANDARD DEVIATION , 1954 .

[23]  Youn Min Chou,et al.  Power comparisons for a hotelling's t2 STATISTIC , 1999 .

[24]  Heldermann Verlag Some Group Inspection Based Multi-Attribute Control Charts to Identify Process Deterioration , 2005 .

[25]  Richard L. Marcellus Performance Measures for ―X Charts with Asymmetric Control Limits , 2006, Qual. Reliab. Eng. Int..

[26]  Joel K. Jolayemi A unified approximation scheme for the convolution of independent binomial variables , 1992 .

[27]  William H. Woodall,et al.  Controversies and Contradictions in Statistical Process Control , 2000 .

[28]  Erik Johansson,et al.  Multivariate process and quality monitoring applied to an electrolysis process. : Part II - Multivariate time-series analysis of lagged latent variables , 1998 .

[29]  J. Edward Jackson,et al.  Principal Components and Factor Analysis: Part I - Principal Components , 1980 .

[30]  Lotfi A. Zadeh,et al.  The Concepts of a Linguistic Variable and its Application to Approximate Reasoning , 1975 .

[31]  J. E. Jackson,et al.  Control Procedures for Residuals Associated With Principal Component Analysis , 1979 .

[32]  Jye-Chyi Lu,et al.  Multivariate Zero-Inflated Poisson Models and Their Applications , 1999, Technometrics.

[33]  Jian Zhang,et al.  MULTIVARIATE CUMULATIVE SUM CONTROL CHARTS BASED ON PROJECTION PURSUIT , 2001 .

[34]  A. B. Yeh,et al.  A likelihood-ratio-based EWMA control chart for monitoring variability of multivariate normal processes , 2004 .

[35]  Mark E. Johnson,et al.  Multivariate Statistical Simulation , 1989, International Encyclopedia of Statistical Science.

[36]  Alireza Faraz,et al.  Fuzzy Control Chart A Better Alternative for Shewhart Average Chart , 2007 .

[37]  John C. Young,et al.  A Practical Approach for Interpreting Multivariate T2 Control Chart Signals , 1997 .

[38]  S. W. Butler,et al.  Supervisory run-to-run control of polysilicon gate etch using in situ ellipsometry , 1994 .

[39]  H. Kramer,et al.  Ewma charts for multivariate time series , 1997 .

[40]  Gamal Weheba,et al.  The Economic Design of ―x Charts: A Proactive Approach , 2005 .

[41]  B. J. Murphy Selecting Out of Control Variables with the T2 Multivariate Quality Control Procedure , 1987 .

[42]  Janusz Kacprzyk,et al.  Computing with Words in Information/Intelligent Systems 1 , 1999 .

[43]  Min Xie,et al.  Statistical Models and Control Charts for High-Quality Processes , 2002 .

[44]  Douglas C. Montgomery,et al.  Economic Design of T2 Control Charts to Maintain Current Control of a Process , 1972 .

[45]  Neuro-Fuzzy Model for Classifying and Monitoring Multivariate Attribute Processes , 2002 .

[46]  H. Shore General control charts for variables , 2000 .

[47]  R. Crosier Multivariate generalizations of cumulative sum quality-control schemes , 1988 .

[48]  Gyo-Young Cho,et al.  Multivariate Control Charts for Monitoring the Mean Vector and Covariance Matrix , 2006 .

[49]  Ali Cinar,et al.  Intelligent process monitoring by interfacing knowledge-based systems and multivariate statistical monitoring , 2000 .

[50]  Douglas M. Hawkins,et al.  Regression Adjustment for Variables in Multivariate Quality Control , 1993 .

[51]  S. Shapiro,et al.  An Analysis of Variance Test for Normality (Complete Samples) , 1965 .

[52]  J. Healy A note on multivariate CUSUM procedures , 1987 .

[53]  Erik Johansson,et al.  Multivariate process and quality monitoring applied to an electrolysis process: Part I. Process supervision with multivariate control charts , 1998 .

[54]  Philip M. Lurie,et al.  An Approximate Method for Sampling Correlated Random Variables From Partially-Specified Distributions , 1998 .

[55]  A. J. Morris,et al.  Performance monitoring of a multi-product semi-batch process , 2001 .

[56]  Neil C. Schwertman,et al.  OPTIMAL LIMITS FOR ATTRIBUTES CONTROL CHARTS , 1997 .

[57]  A. R. Crathorne,et al.  Economic Control of Quality of Manufactured Product. , 1933 .

[58]  A TRANSLATION FAMILY OF BIVARIATE DISTRIBUTIONS AND FR?CHET'S BOUNDS , 2016 .

[59]  Nola D. Tracy,et al.  Multivariate Control Charts for Individual Observations , 1992 .

[60]  R. N. Rattihalli,et al.  Exact Multi-attribute Acceptance Single Sampling Plan , 2005 .

[61]  Richard S. Leavenworth,et al.  The Negative Binomial Model for Counts in Units of Varying Size , 1976 .

[62]  Christos Georgakis,et al.  Disturbance detection and isolation by dynamic principal component analysis , 1995 .

[63]  J. Edward Jackson,et al.  All Count Distributions Are Not Alike , 1972 .

[64]  J Junyi Zhang,et al.  Cumulative sum control charts for covariance matrix , 2000 .

[65]  Gemai Chen,et al.  AN IMPROVED P CHART THROUGH SIMPLE ADJUSTMENTS , 1998 .

[66]  S. Bersimis,et al.  IDENTIFYING THE OUT OF CONTROL VARIABLE IN A MULTIVARIATE CONTROL CHART , 2002 .

[67]  Anil K. Bera,et al.  A test for normality of observations and regression residuals , 1987 .

[68]  J. Franklin,et al.  The elements of statistical learning: data mining, inference and prediction , 2005 .

[69]  J. Pignatiello,et al.  On constructing T 2 control charts for retrospective examination , 2000 .

[70]  Seyed Taghi Akhavan Niaki,et al.  Monitoring Multi-Attribute Processes Based on NORTA Inverse Transformed Vectors , 2009 .

[71]  Min-Chia Wang,et al.  The application of control chart for defects and defect clustering in IC manufacturing based on fuzzy theory , 2007, Expert Syst. Appl..

[72]  W. T. Tucker,et al.  Identification of out of control quality characteristics in a multivariate manufacturing environment , 1991 .

[73]  Connie M. Borror,et al.  Robustness properties of multivariate EWMA control charts , 2003 .

[74]  A. Smilde,et al.  The effect of the size of the training set and number of principal components on the false alarm rate in statistical process monitoring , 2004 .

[75]  Hiroshi Ohta,et al.  Control charts for process average and variability based on linguistic data , 1993 .

[76]  Douglas C. Montgomery,et al.  Investigation and characterization of a control scheme for multivariate quality control , 1992 .

[77]  S. Shapiro,et al.  An Approximate Analysis of Variance Test for Normality , 1972 .

[78]  H. Hotelling Multivariate Quality Control-illustrated by the air testing of sample bombsights , 1947 .

[79]  Lotfi A. Zadeh Computing with Words in Information/Intelligent Systems 2: Applications , 2010 .

[80]  S. Crowder A simple method for studying run-length distribution of exponentially weighted moving average charts , 1987 .

[81]  Niavarani,et al.  Modeling and generating multi-variate-attribute random vectors using a new simulation method combined with NORTA algorithm , 2013 .

[82]  Karen A. F. Copeland Cumulative Sum Charts and Charting for Quality Improvement , 1999 .

[83]  Hassen Taleb,et al.  On fuzzy and probabilistic control charts , 2002 .

[84]  W. D. Ewan When and How to Use Cu-Sum Charts , 1963 .

[85]  Stelios Psarakis,et al.  Review of multinomial and multiattribute quality control charts , 2009, Qual. Reliab. Eng. Int..

[86]  Junghui Chen,et al.  On-line batch process monitoring using dynamic PCA and dynamic PLS models , 2002 .

[87]  Jyh-Jen Horng Shiau,et al.  An Empirical Bayes Process Monitoring Technique for Polytomous Data , 2005 .

[88]  Thong Ngee Goh,et al.  CONTROL CHART FOR MULTIVARIATE ATTRIBUTE PROCESSES , 1998 .

[89]  Arup Ranjan Mukhopadhyay,et al.  Multivariate attribute control chart using Mahalanobis D2 statistic , 2008 .

[90]  Fugee Tsung,et al.  IMPROVING AUTOMATIC-CONTROLLED PROCESS QUALITY USING ADAPTIVE PRINCIPAL COMPONENT MONITORING , 1999 .

[91]  Francisco Aparisi,et al.  Techniques to interpret T 2 control chart signals , 2006 .

[92]  J. Jackson,et al.  An Application of Multivariate Quality Control to Photographic Processing , 1957 .

[93]  George W. Sturm,et al.  Process monitoring in real time : empirical bayes approach―discrete case , 1991 .

[94]  R. D'Agostino An omnibus test of normality for moderate and large size samples , 1971 .

[95]  George C. Runger,et al.  Designing a Multivariate EWMA Control Chart , 1997 .

[96]  Philip Jonathan,et al.  Two Projection Methods for Use in the Analysis of Multivariate Process Data With an Illustration in Petrochemical Production , 2004, Technometrics.

[97]  Patrick D. Bourke,et al.  Detecting a shift in fraction nonconforming using runlength control charts with 100% inspection , 1991 .

[98]  Enrique Del Castillo,et al.  A multivariate double EWMA process adjustment scheme for drifting processes , 2002, IIE Transactions.

[99]  Connie M. Borror,et al.  Design Strategies for the Multivariate Exponentially Weighted Moving Average Control Chart , 2004 .

[100]  Lotfi A. Zadeh,et al.  The concept of a linguistic variable and its application to approximate reasoning - II , 1975, Inf. Sci..

[101]  K. Hirota,et al.  Multivariate Fuzzy Multinomial Control Charts , 2006 .

[102]  Babak Abbasi,et al.  On the monitoring of multi-attributes high-quality production processes , 2007 .

[103]  Douglas C. Montgomery,et al.  Statistically constrained economic design of the multivariate exponentially weighted moving average control chart , 2001 .

[104]  E. S. Page CONTINUOUS INSPECTION SCHEMES , 1954 .

[105]  B.G.M. Vandeginste,et al.  The application of multivariate quality control in gas chromatography. , 1999 .

[106]  William H. Woodall,et al.  THE STATISTICAL DESIGN OF CUSUM CHARTS , 1993 .

[107]  D. A. Evans,et al.  An approach to the probability distribution of cusum run length , 1972 .

[108]  Charles W. Champ,et al.  Assessment of Multivariate Process Control Techniques , 1997 .

[109]  Joseph L. Hammond,et al.  Generation of Pseudorandom Numbers with Specified Univariate Distributions and Correlation Coefficients , 1975, IEEE Transactions on Systems, Man, and Cybernetics.

[110]  Charles W. Champ,et al.  Effects of Parameter Estimation on Control Chart Properties: A Literature Review , 2006 .

[111]  Elvira N. Loredo,et al.  A Program for ARL Calculation for Multivariate EWMA Charts , 2001 .

[112]  Joel K. Jolayemi Convolution of independent binomial variables: an approximation method and a comparative study , 1994 .

[113]  Joe H. Sullivan,et al.  A Self-Starting Control Chart for Multivariate Individual Observations , 2002, Technometrics.

[114]  Connie M. Borror,et al.  Robustness of the EWMA Control Chart to Non-Normality , 1999 .

[115]  Douglas C. Montgomery,et al.  A review of multivariate control charts , 1995 .

[116]  H. I. Patel QUALITY CONTROL METHODS FOR MULTIVARIATE BINOMIAL AND POISSON DISTRIBUTIONS , 1973 .

[117]  E. S. Pearson,et al.  Tests for departure from normality. Empirical results for the distributions of b2 and √b1 , 1973 .

[118]  F. J. Anscombe,et al.  THE TRANSFORMATION OF POISSON, BINOMIAL AND NEGATIVE-BINOMIAL DATA , 1948 .

[119]  Huifen Chen,et al.  Initialization for NORTA: Generation of Random Vectors with Specified Marginals and Correlations , 2001, INFORMS J. Comput..

[120]  Jose A. Romagnoli,et al.  Robust statistical process monitoring , 1996 .

[121]  Cengiz Kahraman,et al.  An alternative approach to fuzzy control charts: Direct fuzzy approach , 2007, Inf. Sci..

[122]  Mohammad Said Asem Khalidi,et al.  MULTIVARIATE QUALITY CONTROL: STATISTICAL PERFORMANCE AND ECONOMIC FEASIBILITY , 2007 .

[123]  A. A. Kalgonda Exponentially Weighted Moving Average Control Chart , 2013 .

[124]  Liu Yumin,et al.  An improvement for mewma in multivariate process control , 1996 .

[125]  Shane G. Henderson,et al.  Behavior of the NORTA method for correlated random vector generation as the dimension increases , 2003, TOMC.

[126]  Staðlaráð Íslands,et al.  Gæðastjórnunarkerfi : grunnatriði og íðorðasafn = Quality Management Systems : fundamentals and vocabulary. , 2006 .

[127]  Charles W. Champ,et al.  A multivariate exponentially weighted moving average control chart , 1992 .

[128]  Olgierd Hryniewicz,et al.  Statistics with fuzzy data in statistical quality control , 2007, Soft Comput..

[129]  J. Chiu,et al.  Attribute Control Chart for Multivariate Poisson Distribution , 2007 .

[130]  R. D'Agostino Small Sample Probability Points for the D Test of Normality , 1972 .

[131]  Edward G. Schilling,et al.  Juran's Quality Handbook , 1998 .

[132]  L. Devroye Non-Uniform Random Variate Generation , 1986 .

[133]  A. L. Goel,et al.  Cumulative Sum Control Charts , 2004 .

[134]  William H. Woodall,et al.  Control Charts Based on Attribute Data: Bibliography and Review , 1997 .

[135]  Minitab Statistical Methods for Quality Improvement , 2001 .

[136]  T. Raz,et al.  Probabilistic and membership approaches in the construction of control charts for linguistic data , 1990 .

[137]  Seyed Taghi Akhavan Niaki,et al.  Skewness Reduction Approach in Multi-Attribute Process Monitoring , 2007 .

[138]  Bruce W. Schmeiser,et al.  Bivariate Gamma Random Vectors , 1982, Oper. Res..

[139]  Seyed Taghi Akhavan Niaki,et al.  Detection and classification mean-shifts in multi-attribute processes by artificial neural networks , 2008 .

[140]  Werner A.J. Schippers,et al.  An integrated approach to process control , 2001 .

[141]  Douglas M. Hawkins,et al.  A General Multivariate Exponentially Weighted Moving-Average Control Chart , 2007 .

[142]  Neil H. Timm,et al.  Multivariate Quality Control Using Finite Intersection Tests , 1996 .

[143]  S. Tseng,et al.  A study on a multivariate EWMA controller , 2002 .

[144]  William J. Moonan Linear Transformation to a Set of Stochastically Dependent Normal Variables , 1957 .

[145]  J.R. Davis,et al.  Multivariate input modeling with johnson distributions , 1996, Proceedings Winter Simulation Conference.

[146]  John C. Young,et al.  Monitoring a multivariate step process , 1996 .

[147]  B. Abbasi,et al.  Generating correlation matrices for normal random vectors in NORTA algorithm using artificial neural networks , 2008 .

[148]  Fred Spiring,et al.  Introduction to Statistical Quality Control , 2007, Technometrics.

[149]  A. Ferrer,et al.  Dealing with missing data in MSPC: several methods, different interpretations, some examples , 2002 .

[150]  J. Edward Jackson,et al.  Quality Control Methods for Several Related Variables , 1959 .

[151]  Leo H. Chiang,et al.  Fault diagnosis in chemical processes using Fisher discriminant analysis, discriminant partial least squares, and principal component analysis , 2000 .

[152]  R. S. Parrish,et al.  Generating random deviates from multivariate Pearson distributions , 1990 .

[153]  Lotfi A. Zadeh,et al.  The concept of a linguistic variable and its application to approximate reasoning-III , 1975, Inf. Sci..

[154]  William H. Woodall,et al.  Exact Properties of Demerit Control Charts , 1999 .

[155]  Kevin W Linderman,et al.  Economic and Economic Statistical Designs for MEWMA Control Charts , 2000 .

[156]  D. Hawkins Multivariate quality control based on regression-adjusted variables , 1991 .

[157]  Stephen A. Stanhope Case studies in multivariate-to-anything transforms for partially specified random vector generation , 2005 .

[158]  Joel K. Jolayemi,et al.  Statistical design of np-charts with multiple control regions , 2002 .

[159]  W. Woodall,et al.  A probabilistic and statistical view of fuzzy methods , 1995 .

[160]  Theodora Kourti,et al.  Multivariate SPC Methods for Process and Product Monitoring , 1996 .

[161]  Seyed Taghi Akhavan Niaki,et al.  Bootstrap method approach in designing multi-attribute control charts , 2007 .

[162]  Joel A. Nachlas,et al.  A simulation approach to multivariate quality control , 1997 .

[163]  John C. Hull Dealing with Dependence in Risk Simulations , 1977 .

[164]  D. Darling,et al.  A Test of Goodness of Fit , 1954 .

[165]  A. Martin-Löf On the composition of elementary errors , 1994 .

[166]  R. Plackett,et al.  Karl Pearson and the Chi-squared Test , 1983 .

[167]  F. Harashima,et al.  On the Correlation of Statistical and Automatic Process Control , 2006 .

[168]  Douglas C. Montgomery,et al.  Process Monitoring for Multiple Count Data Using a Deleted-Y Statistic , 2006 .

[169]  Fah Fatt Gan,et al.  An optimal design of CUSUM quality control charts , 1991 .

[170]  Michael S. Hamada Bayesian tolerance interval control limits for attributes , 2002 .

[171]  H. Hotelling,et al.  Multivariate Quality Control , 1947 .

[172]  George C. Runger,et al.  Multivariate Extensions to Cumulative Sum Control Charts , 2004 .

[173]  Charles W. Champ,et al.  Properties of the T2 Control Chart When Parameters Are Estimated , 2005, Technometrics.

[174]  By W. R. GILKSt,et al.  Adaptive Rejection Sampling for Gibbs Sampling , 2010 .

[175]  J. Edward Jackson,et al.  A User's Guide to Principal Components. , 1991 .

[176]  D. Hawkins A Cusum for a Scale Parameter , 1981 .

[177]  E. S. Pearson,et al.  Tests for departure from normality: Comparison of powers , 1977 .

[178]  Douglas C. Montgomery,et al.  Statistical process monitoring with principal components , 1996 .

[179]  Marion R. Reynolds,et al.  Multivariate Monitoring of the Process Mean Vector with Sequential Sampling , 2005 .

[180]  Averill M. Law,et al.  Simulation Modeling and Analysis , 1982 .

[181]  Trevor A Spedding,et al.  A Synthetic Control Chart for Detecting Fraction Nonconforming Increases , 2001 .

[182]  AN Kolmogorov-Smirnov,et al.  Sulla determinazione empírica di uma legge di distribuzione , 1933 .

[183]  Cengiz Kahraman,et al.  Development of fuzzy process control charts and fuzzy unnatural pattern analyses , 2006, Comput. Stat. Data Anal..

[184]  Smiley W. Cheng,et al.  A New Multivariate Control Chart for Monitoring Both Location and Dispersion , 2005 .

[185]  Youn Min Chou,et al.  Applying Hotelling's T2 Statistic to Batch Processes , 2001 .

[186]  Gerd Ronning A Simple Scheme for Generating Multivariate Gamma Distributions with Non-Negative Covariance Matrix , 1977 .

[187]  George C. Runger,et al.  Comparison of multivariate CUSUM charts , 1990 .

[188]  Nola D. Tracy,et al.  Decomposition of T2 for Multivariate Control Chart Interpretation , 1995 .

[189]  Nandini Das,et al.  Interpreting the out-of-control signal in multivariate control chart — a comparative study , 2008 .

[190]  James C. Benneyan,et al.  Statistical Control Charts Based on a Geometric Distribution , 1992 .

[191]  M. Marcucci MONITORING MULTINOMIAL PROCESSES , 1985 .

[192]  Zachary G. Stoumbos,et al.  Robustness to Non-Normality of the Multivariate EWMA Control Chart , 2002 .

[193]  Joel K. Jolayemi An optimal design of multiattribute control charts for processes subject to a multiplicity of assignable causes , 2000, Appl. Math. Comput..

[194]  Seyed Taghi Akhavan Niaki,et al.  Fault Diagnosis in Multivariate Control Charts Using Artificial Neural Networks , 2005 .

[195]  George C. Runger,et al.  Projections and the U(2) Multivariate Control Chart , 1996 .

[196]  Josef Leydold,et al.  A rejection technique for sampling from log-concave multivariate distributions , 1998, TOMC.

[197]  Alberto Ferrer,et al.  Multivariate Statistical Process Control Based on Principal Component Analysis (MSPC-PCA): Some Reflections and a Case Study in an Autobody Assembly Process , 2007 .