Neural networks and genetic algorithms applications in nuclear magnetic resonance spectroscopy

[1]  J R Griffiths,et al.  Pattern recognition of 31P magnetic resonance spectroscopy tumour spectra obtained in vivo , 1993, NMR in biomedicine.

[2]  M. Williamson,et al.  The structure of the melittin tetramer at different temperatures--an NOE-based calculation with chemical shift refinement. , 1998, European journal of biochemistry.

[3]  Daniel Svozil,et al.  Neural Network Prediction of Carbon-13 NMR Chemical Shifts of Alkanes , 1995, J. Chem. Inf. Comput. Sci..

[4]  J. Lindon,et al.  'Metabonomics': understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. , 1999, Xenobiotica; the fate of foreign compounds in biological systems.

[5]  Simon A. Corne,et al.  An artificial neural network for classifying cross peaks in two-dimensional NMR spectra , 1992 .

[6]  Wolfgang Rosenstiel,et al.  Neural Networks Evaluating NMR Data: An Approach To Visualize Similarities and Relationships of Sol-Gel Derived Inorganic-Organic and Organometallic Hybrid Polymers1 , 2002, J. Chem. Inf. Comput. Sci..

[7]  P J Sadler,et al.  Use of high-resolution proton nuclear magnetic resonance spectroscopy for rapid multi-component analysis of urine. , 1984, Clinical chemistry.

[8]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[9]  Sohail Sheikh,et al.  Classification and Clustering: Using Neural Networks , 1994, Journal of chemical information and computer sciences.

[10]  E. Dow,et al.  Automated analysis of proton NMR spectra from combinatorial rapid parallel synthesis using self-organizing maps. , 2002, Journal of combinatorial chemistry.

[11]  Uwe Himmelreich,et al.  Pathology of Barrett's esophagus by proton magnetic resonance spectroscopy and a statistical classification strategy. , 2003, American journal of surgery.

[12]  J. Leonard,et al.  Investigation of urea cycle enzyme disorders by 1H-NMR spectroscopy. , 1992, Clinica chimica acta; international journal of clinical chemistry.

[13]  Jean-Pierre Doucet,et al.  Neural networks and carbon-13 NMR shift prediction , 1993, J. Chem. Inf. Comput. Sci..

[14]  R L Somorjai,et al.  Near‐optimal region selection for feature space reduction: novel preprocessing methods for classifying MR spectra , 1998, NMR in biomedicine.

[15]  Flemming M. Poulsen,et al.  Identification of 2D 1H NMR antiphase cross peaks using a neural network , 1991 .

[16]  Jean-Pascal Planche,et al.  Asphalt Study by Neuronal Networks. Correlation between Chemical and Rheological Properties , 1997 .

[17]  Kalyanmoy Deb,et al.  A Comparative Analysis of Selection Schemes Used in Genetic Algorithms , 1990, FOGA.

[18]  David G. Gadian,et al.  Proton MR Spectroscopy of Intracranial Tumours: In Vivo and In Vitro Studies , 1990, Journal of computer assisted tomography.

[19]  Morton E. Munk,et al.  The Neural Network as a Tool for Multispectral Interpretation , 1996, J. Chem. Inf. Comput. Sci..

[20]  A. R. Tate,et al.  Pattern recognition analysis , 1998 .

[21]  Umpei Nagashima,et al.  Development of Neural Network Simulator for Structure-Activity Correlation of Molecules (NECO). Prediction of Endo/Exo Substitution of Norbornane Derivatives and of Carcinogenic Activity of PAHs from 13C-NMR Shifts , 1996, J. Chem. Inf. Comput. Sci..

[22]  J. Pons,et al.  RESCUE: An artificial neural network tool for the NMR spectral assignment of proteins , 1999, Journal of biomolecular NMR.

[23]  Karl-Heinz Ott,et al.  Metabonomics classifies pathways affected by bioactive compounds. Artificial neural network classification of NMR spectra of plant extracts. , 2003, Phytochemistry.

[24]  Jan Aasly,et al.  Applications of neural network analyses to in vivo 1H magnetic resonance spectroscopy of Parkinson disease patients , 2002, Journal of magnetic resonance imaging : JMRI.

[25]  D. Pearlman FINGAR: A new genetic algorithm-based method for fitting NMR data , 1996, Journal of biomolecular NMR.

[26]  J. Devillers,et al.  Strengths and Weaknesses of the Backpropagation Neural Network in QSAR and QSPR Studies , 1996 .

[27]  A Darvill,et al.  Identification of the 1H-NMR spectra of complex oligosaccharides with artificial neural networks , 1991, Science.

[28]  V. Kvasnicka An application of neural networks in chemistry. Prediction of13C NMR chemical shifts , 1991 .

[29]  W. Mackinnon,et al.  Fine-needle biopsy specimens of benign breast lesions distinguished from invasive cancer ex vivo with proton MR spectroscopy. , 1997, Radiology.

[30]  Kuo-Bin Li,et al.  Automated Resonance Assignment of Proteins Using Heteronuclear 3D NMR, 1. Backbone Spin Systems Extraction and Creation of Polypeptides , 1997, J. Chem. Inf. Comput. Sci..

[31]  J R Griffiths,et al.  Pattern recognition analysis of 1H NMR spectra from perchloric acid extracts of human brain tumor biopsies , 1998, Magnetic resonance in medicine.

[32]  V. Kvasnicka,et al.  Application of neural networks with feedback connections in chemistry: prediction of 13C NMR chemical shifts in a series of monosubstituted benzenes , 1992 .

[33]  Biswajit Basu,et al.  Prediction of biodegradability of mineral base oils from chemical composition using artificial neural networks , 1998 .

[34]  R. J. Maxwell,et al.  Generalization performance using backpropagation algorithms applied to patterns derived from tumour 1 H NMR spectra , 1993 .

[35]  N. Olsen,et al.  Evaluation of muscle diseases using artificial neural network analysis of 31P MR spectroscopy data , 1995, Magnetic resonance in medicine.

[36]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[37]  J. Prestegard,et al.  Application of neural networks to automated assignment of NMR spectra of proteins , 1994, Journal of biomolecular NMR.

[38]  D. Villemin,et al.  Use of a neural network to determine the boiling point of alkanes , 1994 .

[39]  M. Williamson,et al.  Empirical Comparisons of Models for Chemical-Shift Calculation in Proteins , 1993 .

[40]  Daniel Cabrol-Bass,et al.  13C NMR Chemical Shift Prediction of sp2 Carbon Atoms in Acyclic Alkenes Using Neural Networks , 1996, J. Chem. Inf. Comput. Sci..

[41]  David E. Axelson,et al.  Solid‐state nuclear magnetic resonance relaxation times in crosslinked macroporous polymer particles of divinylbenzene homopolymers , 1999 .

[42]  M Ala-Korpela,et al.  Application of self‐organizing maps for the detection and classification of human blood plasma lipoprotein lipid profiles on the basis of 1H NMR spectroscopy data , 1998, NMR in biomedicine.

[43]  J. Saunders,et al.  Classification of Brain Tumors by Ex Vivo 1H NMR Spectroscopy , 1995, Journal of neurochemistry.

[44]  J. U. Thomsen,et al.  Pattern recognition of the 1H NMR spectra of sugar alditols using a neural network , 1989 .

[45]  George M. Whitesides,et al.  FEED-FORWARD NEURAL NETWORKS IN CHEMISTRY : MATHEMATICAL SYSTEMS FOR CLASSIFICATION AND PATTERN RECOGNITION , 1993 .

[46]  M. Köck,et al.  Cocon: From NMR Correlation Data to Molecular Constitutions , 1997 .

[47]  James Devillers,et al.  Neural Networks in QSAR and Drug Design , 1996 .

[48]  L. P. Lindeman,et al.  Carbon-13 nuclear magnetic resonance spectrometry. Chemical shifts for the paraffins through C9 , 1971 .

[49]  N Aranìbar,et al.  Automated mode-of-action detection by metabolic profiling. , 2001, Biochemical and biophysical research communications.

[50]  D. Louis Collins,et al.  Accurate, noninvasive diagnosis of human brain tumors by using proton magnetic resonance spectroscopy , 1996, Nature Medicine.

[51]  S. Amendolia,et al.  Classification and quantitation of 1H NMR spectra of alditols binary mixtures using artificial neural networks. , 1998, Analytical chemistry.

[52]  F. Valafar,et al.  Cryptococcus neoformans Chemotyping by Quantitative Analysis of 1H Nuclear Magnetic Resonance Spectra of Glucuronoxylomannans with a Computer-Simulated Artificial Neural Network , 1998, Clinical Diagnostic Laboratory Immunology.

[53]  Risto A. Kauppinen,et al.  Diagnostic assessment of brain tumours and non-neoplastic brain disorders in vivo using proton nuclear magnetic resonance spectroscopy and artificial neural networks , 1999, Journal of Cancer Research and Clinical Oncology.

[54]  Keinosuke Fukunaga,et al.  Introduction to Statistical Pattern Recognition , 1972 .

[55]  J. Friedman Regularized Discriminant Analysis , 1989 .

[56]  C E Mountford,et al.  Proton magnetic resonance and human thyroid neoplasia. I: Discrimination between benign and malignant neoplasms. , 1994, The American journal of medicine.

[57]  J R Griffiths,et al.  Classification of tumour 1H NMR spectra by pattern recognition , 1992, NMR in biomedicine.

[58]  J C Lindon,et al.  Classification of toxin-induced changes in 1H NMR spectra of urine using an artificial neural network. , 1995, Journal of pharmaceutical and biomedical analysis.

[59]  Geoffrey M. J. West Predicting phosphorus NMR shifts using neural networks , 1993, J. Chem. Inf. Comput. Sci..

[60]  J C Lindon,et al.  Pattern recognition analysis of high resolution 1H NMR spectra of urine. A nonlinear mapping approach to the classification of toxicological data , 1990, NMR in biomedicine.

[61]  M Adler Modified genetic algorithm resolves ambiguous NOE restraints and reduces unsightly NOE violations , 2000, Proteins.

[62]  D. Gadian NMR and its Applications to Living Systems , 1996 .

[63]  W. Negendank,et al.  Studies of human tumors by MRS: A review , 1992, NMR in biomedicine.

[64]  Kishan G. Mehrotra,et al.  Analyzing Images Containing Multiple Sparse Patterns with Neural Networks , 1991, IJCAI.

[65]  R. Somorjai,et al.  Rapid Identification of Candida Species by Using Nuclear Magnetic Resonance Spectroscopy and a Statistical Classification Strategy , 2003, Applied and Environmental Microbiology.

[66]  K. Schaper,et al.  Substituted Xanthones as Antimycobacterial Agents , 1999 .

[67]  D Fewer,et al.  Classification of 1H MR spectra of human brain neoplasms: The influence of preprocessing and computerized consensus diagnosis on classification accuracy , 1996, Journal of magnetic resonance imaging : JMRI.

[68]  Jon W. Ball,et al.  Automated selection of regression models using neural networks for carbon-13 NMR spectral predictions , 1993 .

[69]  Christopher M. Bishop,et al.  Neural networks for pattern recognition , 1995 .

[70]  R. Moros,et al.  Determination of octane numbers of gasoline compounds from their chemical structure by 13C NMR spectroscopy and neural networks , 2001 .

[71]  Heinz Mühlenbein,et al.  Predictive Models for the Breeder Genetic Algorithm I. Continuous Parameter Optimization , 1993, Evolutionary Computation.

[72]  R. Freeman Beg, borrow, or steal. finding ideas for new NMR experiments , 2003 .

[73]  D. Pearlman,et al.  Automated detection of problem restraints in NMR data sets using the FINGAR genetic algorithm method , 1999, Journal of biomolecular NMR.

[74]  R. Meusinger Gasoline analysis by 1H nuclear magnetic resonance spectroscopy , 1996 .

[75]  Lawrence S. Anker,et al.  Prediciton of carbon-13 nuclear magnetic resonance chemical shifts by artificial neural networks , 1992 .

[76]  R. Somorjai,et al.  An ex vivo study exploring the diagnostic potential of 1H magnetic resonance spectroscopy in squamous cell carcinoma of the head and neck region , 2002, Head & neck.

[77]  E Holmes,et al.  Development of a model for classification of toxin‐induced lesions using 1H NMR spectroscopy of urine combined with pattern recognition , 1998, NMR in biomedicine.

[78]  C. Mountford,et al.  Proton MR and human cervical neoplasia: ex vivo spectroscopy allows distinction of invasive carcinoma of the cervix from carcinoma in situ and other preinvasive lesions. , 1993, Radiology.

[79]  R. Bourne,et al.  Identification of Enterococcus, Streptococcus, andStaphylococcus by Multivariate Analysis of Proton Magnetic Resonance Spectroscopic Data from Plate Cultures , 2001, Journal of Clinical Microbiology.

[80]  D. Stephenson,et al.  Automated analysis of high-resolution NMR spectra. I. Principles and computational strategy , 1980 .

[81]  M. Adler Deviation versus violation plots: A new technique for assessing the self-consistency of NMR data , 1996, Journal of biomolecular NMR.

[82]  P J Lisboa,et al.  Assessment of statistical and neural networks methods in NMR spectral classification and metabolite selection , 1998, NMR in biomedicine.

[83]  PeterD. Wentzell Software development in chemistry : Software Development in Chemistry 4. Proceedings of the Workshop “Computers in Chemistry”, Hochfilzen/Tyrol, edited by J. Gasteiger, Springer-Verlag, 1990, DM 98.00, (viii + 419 pages), ISBN: 0-540-52173-9 , 1991 .

[84]  C. Hunter,et al.  Complexation-Induced Changes in 1H NMR Chemical Shift for Supramolecular Structure Determination , 1999 .

[85]  Peter Russell,et al.  Computerized Consensus Diagnosis: A Classification Strategy for the Robust Analysis of MR Spectra. I. Application to 1H Spectra of Thyroid Neoplasms , 1995, Magnetic resonance in medicine.

[86]  R. Palmer,et al.  Introduction to the theory of neural computation , 1994, The advanced book program.

[87]  Yrjö Hiltunen,et al.  Application of Quantitative Artificial Neural Network Analysis to 2D NMR Spectra of Hydrocarbon Mixtures , 2002, J. Chem. Inf. Comput. Sci..

[88]  Bryan C. Sanctuary,et al.  Using Genetic Algorithms with a Priori Knowledge for Quantitative NMR Signal Analysis , 1998, J. Chem. Inf. Comput. Sci..

[89]  C. Beddell,et al.  Automatic data reduction and pattern recognition methods for analysis of 1H nuclear magnetic resonance spectra of human urine from normal and pathological states. , 1994, Analytical biochemistry.

[90]  Jens Meiler,et al.  Validation of Structural Proposals by Substructure Analysis and 13C NMR Chemical Shift Prediction , 2002, J. Chem. Inf. Comput. Sci..

[91]  J. Meiler,et al.  Genius: a genetic algorithm for automated structure elucidation from 13C NMR spectra. , 2002, Journal of the American Chemical Society.

[92]  R. Somorjai,et al.  Distinguishing normal from rejecting renal allografts: application of a three—stage classification strategy to MR and IR spectra of urine , 2002 .

[93]  Sonja Nikolic,et al.  Comparative study of molecular descriptors derived from the distance matrix , 1992, J. Chem. Inf. Comput. Sci..

[94]  B. Fan,et al.  Artificial neural network simulation of 13C NMR shifts for methyl substituted cyclohexanes , 1994 .

[95]  P Boesiger,et al.  Heuristic optimization algorithms applied to the quantification of spectroscopic data , 1998, Magnetic resonance in medicine.

[96]  J Kurhanewicz,et al.  Citrate as an in vivo marker to discriminate prostate cancer from benign prostatic hyperplasia and normal prostate peripheral zone: detection via localized proton spectroscopy. , 1995, Urology.

[97]  Simon A. Corne Artificial neural networks for pattern recognition , 1996 .

[98]  Teuvo Kohonen,et al.  Self-Organizing Maps , 2010 .

[99]  Michael Andrec,et al.  Performance of a neural-network-based determination of amino acid class and secondary structure from 1H-15N NMR data , 1997, Journal of biomolecular NMR.

[100]  R J Gerstle,et al.  The role of neural networks in improving the accuracy of MR spectroscopy for the diagnosis of head and neck squamous cell carcinoma. , 2000, AJNR. American journal of neuroradiology.

[101]  R. Somorjai,et al.  Pathology of hepatocellular carcinoma and its precursors using proton magnetic resonance spectroscopy and a statistical classification strategy , 2002, Pathology.

[102]  M Ala-Korpela,et al.  Automated classification of human brain tumours by neural network analysis using in vivo 1H magnetic resonance spectroscopic metabolite phenotypes. , 1996, Neuroreport.

[103]  E Holmes,et al.  Metabonomic characterization of genetic variations in toxicological and metabolic responses using probabilistic neural networks. , 2001, Chemical research in toxicology.

[104]  Jens Meiler,et al.  Automated Structure Elucidation of Organic Molecules from 13C NMR Spectra Using Genetic Algorithms and Neural Networks , 2001, J. Chem. Inf. Comput. Sci..

[105]  W. Bremser Hose — a novel substructure code , 1978 .

[106]  P Xu,et al.  Delayed‐focus pulses for magnetic resonance imaging: An evolutionary approach , 1991, Magnetic resonance in medicine.

[107]  G. Hagberg,et al.  From magnetic resonance spectroscopy to classification of tumors. A review of pattern recognition methods , 1998, NMR in biomedicine.

[108]  Ray Freeman,et al.  High resolution NMR using selective excitation , 1992 .

[109]  Faramarz Valafar,et al.  Data mining and knowledge discovery in proton nuclear magnetic resonance (1H-NMR) spectra using frequency to information transformation (FIT) , 2002, Knowl. Based Syst..

[110]  C E Mountford,et al.  Diagnosis and prognosis of breast cancer by magnetic resonance spectroscopy of fine‐needle aspirates analysed using a statistical classification strategy , 2001, The British journal of surgery.

[111]  R. Kauppinen,et al.  Quantitative Metabolite Patterns of Human Brain Tumors: Detection by 1H NMR Spectroscopy In Vivo and In Vitro , 1994, Journal of computer assisted tomography.

[112]  Jens Meiler,et al.  Fast Determination of 13C NMR Chemical Shifts Using Artificial Neural Networks , 2000, J. Chem. Inf. Comput. Sci..

[113]  Biswajit Basu,et al.  A Neural Network Approach to the Prediction of Cetane Number of Diesel Fuels Using Nuclear Magnetic Resonance (NMR) Spectroscopy , 2003 .

[114]  M Ala-Korpela,et al.  Artificial neural network analysis of 1H nuclear magnetic resonance spectroscopic data from human plasma. , 1996, Anticancer research.

[115]  I Martínez-Pérez,et al.  Genetic programming for classification and feature selection: analysis of 1H nuclear magnetic resonance spectra from human brain tumour biopsies , 1998, NMR in biomedicine.

[116]  S. Webb,et al.  Quantitative magnetic resonance spectroscopy by optimized numerical curve fitting , 1992, NMR in biomedicine.

[117]  Guang Zhu,et al.  Using Neural Network Predicted Secondary Structure Information in Automatic Protein NMR Assignment , 1997, J. Chem. Inf. Comput. Sci..

[118]  Jenny Forshed,et al.  NMR and Bayesian regularized neural network regression for impurity determination of 4-aminophenol. , 2002, Journal of pharmaceutical and biomedical analysis.