Control of Separation on the Flap of a Three-Element High-Lift Configuration

This paper describes a joint experimental and numerical investigation of the control of the flow over the flap of a three-element high-lift configuration by means of periodic excitation. At Reynolds numbers between 0.3 ◊ 10 6 and 1 ◊ 10 6 the flow is influenced by periodic blowing or periodic blowing/suction through slots near the flap leading edge. The delay of flow separation by periodic vertical excitation could be identified in the experiments as well as numerical simulations based on the Unsteady Reynolds-averaged Navier-Stokes equations (URANS). As a result, the mean aerodynamic lift of this practically relevant wing configuration could be significantly enhanced. By investigating dierent excitation frequencies and intensities optimum control parameters could be found. The behaviour of the aerodynamic forces with varying flap deflection angle are measured on a finite swept wing. Scientific visualisation of the numerical simulations of an infinite swept wing allows a detailed analysis of the structures in this complex flow field and the eect of flow control on these.

[1]  Hans-Peter Seidel,et al.  Eurographics/ Ieee-vgtc Symposium on Visualization (2006) Path Line Oriented Topology for Periodic 2d Time-dependent Vector Fields , 2022 .

[2]  A. Cain,et al.  NUMERICAL SIMULATION OF SYNTHETIC JET ACTUATORS , 1997 .

[3]  D V Maddalon,et al.  Transition Flight Experiments on a Swept Wing With Suction , 1989 .

[4]  Ahmed A. Hassan,et al.  Effects of zero-mass 'synthetic' jets on the aerodynamics of the NACA-0012 airfoil , 1997 .

[5]  Frank Thiele,et al.  Separation Control by Periodic Excitation and its Application to a High Lift Configuration , 2004 .

[6]  M. Schatz Numerische Simulation der Beeinflussung instationärer Strömungsablösung durch frei bewegliche Rückstromklappen auf Tragflügeln , 2003 .

[7]  Hans-Christian Hege,et al.  Eurographics -ieee Vgtc Symposium on Visualization (2005) Galilean Invariant Extraction and Iconic Representation of Vortex Core Lines , 2022 .

[8]  Israel J Wygnanski,et al.  Dynamic Stall Control by Periodic Excitation, Part 2: Mechanisms , 2001 .

[9]  Frank Thiele,et al.  Numerical study of high-lift flow with separation control by periodic excitation , 2001 .

[10]  Lars Koop Aktive und passive Strömungsbeeinflussung zur Reduzierung der Schallabstrahlung an Hinterkantenklappen von Tragflügeln , 2005 .

[11]  Sivaguru S. Ravindran,et al.  Active Control of Flow Separation Over an Airfoil , 1999 .

[12]  Pavlos Vlachos,et al.  Post-Stall Flow Control of Sharp-Edged Wings via Unsteady Blowing , 2004 .

[13]  Simulation of Steady Circulation Control for Marine-Vehicle Control Surfaces , 2004 .

[14]  W. Nitsche,et al.  On active control of high-lift flow , 1999 .

[15]  Hans-Peter Seidel,et al.  Extraction of parallel vector surfaces in 3D time-dependent fields and application to vortex core line tracking , 2005, VIS 05. IEEE Visualization, 2005..

[16]  Lars Koop,et al.  Investigation of the unsteady flow field inside a leading edge slat cove , 2005 .

[17]  Avi Seifert,et al.  Active Control of Separation From the Flap of a Supercritical Airfoil , 2003 .

[18]  Mohamed Gad-el-Hak,et al.  Flow Control: The Future , 2001 .

[19]  Israel J Wygnanski The Variables Affecting the Control of Separation by Periodic Excitation , 2004 .

[20]  Hans-Peter Seidel,et al.  Topological methods for 2D time-dependent vector fields based on stream lines and path lines , 2005, IEEE Transactions on Visualization and Computer Graphics.

[21]  L. D. Krai,et al.  ACTIVE FLOW CONTROL APPLIED TO AN AIRFOIL , 1998 .

[22]  A. Gross,et al.  Numerical investigation of active flow control for low-pressure turbine blade separation , 2004 .

[23]  I. Wygnanski,et al.  Delay of Airfoil Stall by Periodic Excitation , 1996 .