SiOC thin films: an efficient light source and an ideal host matrix for Eu2+ ions.

The intense luminescence of SiOC layers is studied and its dependence on the parameters of the thermal annealing process elucidated. Although the emission of SiOC is bright enough to be interesting for practical applications, this material is even more promising as a host matrix for optically active Eu ions. Indeed, when incorporated in a SiOC matrix, Eu(3+) ions are efficiently reduced to Eu(2+), producing a very strong visible luminescence peaked at 440 nm. Eu(2+) ions benefit also of the occurrence of an energy transfer mechanism involving the matrix, which increases the efficiency of photon absorption for exciting wavelengths shorter than 300 nm. We evaluate that Eu doping of SiOC produces an enhancement of the luminescence intensity at 440 nm accounting for about a factor of 15. These properties open the way to new promising perspectives for the application of Eu-doped materials in photonic and lighting technologies.

[1]  F. Iacona,et al.  New strategies to improve the luminescence efficiency of Eu ions embedded in Si-based matrices , 2013 .

[2]  F. Priolo,et al.  Eu3+ reduction and efficient light emission in Eu2O3 films deposited on Si substrates. , 2012, Optics express.

[3]  Lu Jin,et al.  Structure and luminescence evolution of annealed Europium-doped silicon oxides films. , 2010, Optics express.

[4]  Mengbing Huang,et al.  White light emission from amorphous silicon oxycarbide (a-SiCxOy) thin films: Role of composition and postdeposition annealing , 2010 .

[5]  G. Dong,et al.  Reduction of Eu3+ to Eu2+ in Eu-doped high silica glass prepared in air atmosphere , 2010 .

[6]  M. Helm,et al.  Anomalous wear-out phenomena of europium-implanted light emitters based on a metal-oxide-semiconductor structure , 2009 .

[7]  T. Hayakawa,et al.  Blue light emission from Eu2+ ions in sol-gel-derived Al2O3―SiO2 glasses , 2009 .

[8]  Hong-Qing He,et al.  Photoluminescence properties of Eu2+-activated CaSi2O2N2: Redshift and concentration quenching , 2009 .

[9]  T. He,et al.  Preparation, characterization, and optical properties of nano- and submicron-sized Y2O3:Eu3+ phosphors , 2009 .

[10]  H. Shirai,et al.  White light emission from silicon oxycarbide films prepared by using atmospheric pressure microplasma jet , 2009 .

[11]  G. Mountjoy,et al.  Molecular-dynamics modeling of Eu3+-ion clustering in SiO2 glass , 2009 .

[12]  Su Jin Kim,et al.  Deposition of Europium Oxide on Si and its optical properties depending on thermal annealing conditions , 2009 .

[13]  V. Lysenko,et al.  Color control of white photoluminescence from carbon-incorporated silicon oxide , 2008 .

[14]  M. Helm,et al.  Blue and red electroluminescence of Europium-implanted metal-oxide-semiconductor structures as a probe for the dynamics of microstructure , 2008 .

[15]  Blue emission from Eu2+-doped high silica glass by near-infrared femtosecond laser irradiation , 2008 .

[16]  J. Salonen,et al.  Strong White Photoluminescence from Carbon-Incorporated Silicon Oxide Fabricated by Preferential Oxidation of Silicon in Nano-Structured Si:C Layer , 2007 .

[17]  Wolfgang Skorupa,et al.  Switchable two-color electroluminescence based on a Si metal-oxide-semiconductor structure doped with Eu , 2007 .

[18]  A. Kaloyeros,et al.  Efficient energy transfer from silicon oxycarbide matrix to Er ions via indirect excitation mechanisms , 2007 .

[19]  Namkyoo Park,et al.  Si nanocluster sensitization of Er-doped silica for optical amplet using top-pumping visible LEDs , 2006, IEEE Journal of Selected Topics in Quantum Electronics.

[20]  B. J. Kim,et al.  Formation of europium-silicate thin films and their photoluminescence properties , 2006 .

[21]  J. Shin,et al.  Intense blue-white luminescence from carbon-doped silicon-rich silicon oxide , 2004 .

[22]  A. Quaranta,et al.  Synthesis and luminescent properties of novel Eu2+-doped silicon oxycarbide glasses , 2004 .

[23]  Partha S. Dutta,et al.  Low temperature deposition of nanocrystalline silicon carbide films by plasma enhanced chemical vapor deposition and their structural and optical characterization , 2003 .

[24]  B. Garrido,et al.  White luminescence from Si+ and C+ ion-implanted SiO2 films , 2003 .

[25]  J. Lægsgaard Theory of Al 2 O 3 incorporation in SiO 2 , 2002 .

[26]  M. S. Hwang,et al.  Origin of low dielectric constant of carbon-incorporated silicon oxide film deposited by plasma enhanced chemical vapor deposition , 2001 .

[27]  Photoluminescence studies of SiC nanocrystals embedded in a SiO2 matrix , 2001 .

[28]  A. Galeckas,et al.  Analysis of the stretched exponential photoluminescence decay from nanometer-sized silicon crystals in SiO2 , 1999 .

[29]  G. Franzò,et al.  The excitation mechanism of rare-earth ions in silicon nanocrystals , 1999 .

[30]  Takahiro Matsumoto,et al.  Electroluminescence of europium silicate thin film on silicon , 1999 .

[31]  K. Su,et al.  Insights into the Oxidation Chemistry of SiOC Ceramics Derived from Silsesquioxanes , 1999 .

[32]  Keiichi Yamamoto,et al.  1.54 μm photoluminescence of Er3+ doped into SiO2 films containing Si nanocrystals: Evidence for energy transfer from Si nanocrystals to Er3+ , 1997 .