Saturated LTSs for Adhesive Rewriting Systems

G-Reactive Systems (GRSs) are a framework for the derivation of labelled transition systems (LTSs) from a set of unlabelled rules. A label for a transition from A to B is a context C[-] such that C[A] may perform a reaction and reach B. If either all contexts, or just the "minimal" ones, are considered, the resulting LTS is called saturated (GIPO, respectively). The borrowed contexts (BCs) technique addresses the issue in the setting of the DPO approach. Indeed, from an adhesive rewriting system (ARS) a GRS can be defined such that DPO derivations correspond to reactions, and BC derivations to transitions of the GIPO LTS. This paper extends the BCs technique in order to derive saturated LTSs for ARSs, applying it to capture bisimilarity for asynchronous calculi.

[1]  Hartmut Ehrig,et al.  Deriving bisimulation congruences in the DPO approach to graph rewriting with borrowed contexts , 2006, Mathematical Structures in Computer Science.

[2]  Robin Milner,et al.  Deriving Bisimulation Congruences for Reactive Systems , 2000, CONCUR.

[3]  Martin Wirsing,et al.  Extraction of Structured Programs from Specification Proofs , 1999, WADT.

[4]  Fabio Gadducci,et al.  Synthesising CCS bisimulation using graph rewriting , 2009, Inf. Comput..

[5]  Marino Miculan,et al.  Deriving Barbed Bisimulations for Bigraphical Reactive Systems , 2009, Electron. Commun. Eur. Assoc. Softw. Sci. Technol..

[6]  Emilio Tuosto,et al.  ICGT 2008 Doctoral Symposium , 2008, ICGT.

[7]  Hartmut Ehrig,et al.  Behavior Preservation in Model Refactoring Using DPO Transformations with Borrowed Contexts , 2008, ICGT.

[8]  Ugo Montanari,et al.  Saturated Semantics for Reactive Systems , 2006, 21st Annual IEEE Symposium on Logic in Computer Science (LICS'06).

[9]  Fabio Gadducci,et al.  A Concurrent Graph Semantics for Mobile Ambients , 2001, MFPS.

[10]  Kim G. Larsen,et al.  On Modal Refinement and Consistency , 2007, CONCUR.

[11]  Vladimiro Sassone,et al.  Deriving Bisimulation Congruences using 2-categories , 2003, Nord. J. Comput..

[12]  Reiko Heckel,et al.  Graph Grammars with Negative Application Conditions , 1996, Fundam. Informaticae.

[13]  Fabio Gadducci,et al.  An inductive view of graph transformation , 1997, WADT.

[14]  Ian Stark,et al.  Free-Algebra Models for the pi-Calculus , 2005, FoSSaCS.

[15]  Furio Honsell,et al.  RPO, Second-order Contexts, and Lambda-calculus , 2008, Log. Methods Comput. Sci..

[16]  R. Milner,et al.  Bigraphical Reactive Systems , 2001, CONCUR.

[17]  Fabio Gadducci,et al.  Reactive Systems, Barbed Semantics, and the Mobile Ambients , 2009, FoSSaCS.

[18]  Antonio Brogi,et al.  On the Use of Behavioural Equivalences for Web Services' Development , 2009, Fundam. Informaticae.

[19]  J. Benabou Introduction to bicategories , 1967 .

[20]  Pawel Sobocinski,et al.  Adhesive and quasiadhesive categories , 2005, RAIRO Theor. Informatics Appl..

[21]  Marsha Chechik,et al.  CONCUR 2008 - Concurrency Theory, 19th International Conference, CONCUR 2008, Toronto, Canada, August 19-22, 2008. Proceedings , 2008, CONCUR.

[22]  Hartmut Ehrig,et al.  Deriving Bisimulation Congruences in the Presence of Negative Application Conditions , 2008, FoSSaCS.

[23]  Luca Cardelli,et al.  Mobile Ambients , 1998, FoSSaCS.

[24]  Vladimiro Sassone,et al.  Reactive systems over cospans , 2005, 20th Annual IEEE Symposium on Logic in Computer Science (LICS' 05).

[25]  Fabio Gadducci,et al.  Labelled Transitions for Mobile Ambients (As Synthesized via a Graphical Encoding) , 2008, EXPRESS.

[26]  Robin Milner,et al.  On Observing Nondeterminism and Concurrency , 1980, ICALP.

[27]  Davide Sangiorgi,et al.  On Bisimulations for the Asynchronous pi-Calculus , 1996, Theor. Comput. Sci..

[28]  Julian Rathke,et al.  Semantic Barbs and Biorthogonality , 2007, FoSSaCS.

[29]  Francesco Zappa Nardelli,et al.  Behavioural Theory for Mobile Ambients , 2004, IFIP TCS.

[30]  Robin Milner,et al.  Barbed Bisimulation , 1992, ICALP.

[31]  Kousha Etessami,et al.  Optimizing Büchi Automata , 2000, CONCUR.

[32]  Nobuko Yoshida,et al.  On Reduction-Based Process Semantics , 1995, Theor. Comput. Sci..

[33]  Luca Cardelli,et al.  Brane Calculi , 2004, CMSB.

[34]  Lars Birkedal,et al.  On the Construction of Sorted Reactive Systems , 2008, CONCUR.

[35]  Ian Stark,et al.  The Continuous pi-Calculus: A Process Algebra for Biochemical Modelling , 2008, CMSB.

[36]  Marino Miculan,et al.  Reactive Systems over Directed Bigraphs , 2007, CONCUR.

[37]  Filippo Bonchi,et al.  Abstract Semantics by Observable Contexts , 2008, ICGT.