Black Hole Mergers From Globular Clusters Observable by LISA I: Eccentric Sources Originating From Relativistic N-body Dynamics

We show that nearly half of all binary black hole (BBH) mergers dynamically assembled in globular clusters have measurable eccentricities (e > 0.01) in the LISA band (10^−2 Hz), when General Relativistic corrections are properly included in the N-body evolution. If only Newtonian gravity is included, the derived fraction of eccentric LISA sources is significantly lower, which explains why recent studies all have greatly underestimated this fraction. Our findings have major implications for how to observationally distinguish between BBH formation channels using eccentricity with LISA, which is one of the key science goals of the mission. We illustrate that the relatively large population of eccentric LISA sources reported here originates from BBHs that merge between hardening binary–single interactions inside their globular cluster. These results indicate a bright future for using LISA to probe the origin of BBH mergers.

[1]  K. France,et al.  Signatures of Hot Molecular Hydrogen Absorption from Protoplanetary Disks. I. Non-thermal Populations , 2017, 1707.03449.

[2]  B. Metzger,et al.  Constraining Stellar-mass Black Hole Mergers in AGN Disks Detectable with LIGO , 2018, The Astrophysical Journal.

[3]  Tomasz Bulik,et al.  The first gravitational-wave source from the isolated evolution of two stars in the 40–100 solar mass range , 2016, Nature.

[4]  Three-body dynamics with gravitational wave emission , 2005, astro-ph/0509885.

[5]  Chris L. Fryer,et al.  DOUBLE COMPACT OBJECTS. III. GRAVITATIONAL-WAVE DETECTION RATES , 2014, 1405.7016.

[6]  M. Joyce,et al.  Not All Stars Are the Sun: Empirical Calibration of the Mixing Length for Metal-poor Stars Using One-dimensional Stellar Evolution Models , 2017, 1712.05082.

[7]  D. Richardson,et al.  THE ROLE OF THE KOZAI–LIDOV MECHANISM IN BLACK HOLE BINARY MERGERS IN GALACTIC CENTERS , 2016, 1604.04948.

[8]  J. Perea,et al.  UNVEILING THE PHYSICS OF LOW-LUMINOSITY AGNs THROUGH X-RAY VARIABILITY: LINER VERSUS SEYFERT 2 , 2016, 1603.08837.

[9]  A. Loeb,et al.  Single progenitor model for GW150914 and GW170104 , 2017, 1706.04211.

[10]  T. Ebisuzaki,et al.  The Japanese space gravitational wave antenna: DECIGO , 2011 .

[11]  Bence Kocsis,et al.  Black Hole Mergers in Galactic Nuclei Induced by the Eccentric Kozai–Lidov Effect , 2017, 1706.09896.

[12]  Chunglee Kim,et al.  Black hole binaries dynamically formed in globular clusters , 2017, 1703.01568.

[13]  B. Carr,et al.  Primordial Black Holes as Dark Matter , 2016, 1607.06077.

[14]  Hyung-Mok Lee,et al.  Black hole binaries in galactic nuclei and gravitational wave sources , 2015, 1501.02717.

[15]  E. Berti,et al.  eLISA eccentricity measurements as tracers of binary black hole formation , 2016, 1605.01341.

[16]  McMillan,et al.  Black Hole Mergers in the Universe , 1999, The Astrophysical journal.

[17]  B. Metzger,et al.  Assisted inspirals of stellar mass black holes embedded in AGN discs: solving the ‘final au problem’ , 2016, 1602.04226.

[18]  A. Dressler,et al.  RETURN TO [Log-]NORMALCY: RETHINKING QUENCHING, THE STAR FORMATION MAIN SEQUENCE, AND PERHAPS MUCH MORE , 2016, 1604.00016.

[19]  L. Hadid,et al.  On the Existence of the Kolmogorov Inertial Range in the Terrestrial Magnetosheath Turbulence , 2016, 1611.00199.

[20]  M. Bejger,et al.  On the gamma-ray burst – gravitational wave association in GW150914 , 2016, Proceedings of the International Astronomical Union.

[21]  John N. Bahcall,et al.  Binary-single star scattering. I: Numerical experiments for equal masses , 1983 .

[22]  V. Kalogera,et al.  DISTINGUISHING BETWEEN FORMATION CHANNELS FOR BINARY BLACK HOLES WITH LISA , 2016, 1606.09558.

[23]  B. A. Boom,et al.  GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence. , 2017, Physical review letters.

[24]  I. Mandel,et al.  DOUBLE COMPACT OBJECTS. I. THE SIGNIFICANCE OF THE COMMON ENVELOPE ON MERGER RATES , 2012, 1202.4901.

[25]  D. Kasen,et al.  OPTICAL THERMONUCLEAR TRANSIENTS FROM TIDAL COMPRESSION OF WHITE DWARFS AS TRACERS OF THE LOW END OF THE MASSIVE BLACK HOLE MASS FUNCTION , 2015, 1508.02399.

[26]  Bernard F. Schutz,et al.  Living Reviews in Relativity: Making an Electronic Journal Live , 1997 .

[27]  E. Berti,et al.  Constraining stellar binary black hole formation scenarios with eLISA eccentricity measurements , 2016, 1606.09295.

[28]  Chunglee Kim,et al.  Compact binaries ejected from globular clusters as gravitational wave sources , 2013, 1308.1641.

[29]  Xudong Sun,et al.  Electric-current Neutralization, Magnetic Shear, and Eruptive Activity in Solar Active Regions , 2017, 1708.04411.

[30]  E. Ofek,et al.  PTF13efv—AN OUTBURST 500 DAYS PRIOR TO THE SNHUNT 275 EXPLOSION AND ITS RADIATIVE EFFICIENCY , 2016, 1605.02450.

[31]  S. Woosley THE PROGENITOR OF GW150914 , 2016, 1603.00511.

[32]  Yan Wang,et al.  TianQin: a space-borne gravitational wave detector , 2015, 1512.02076.

[33]  Mirek Giersz,et al.  MOCCA-SURVEY Database. I. Eccentric Black Hole Mergers during Binary–Single Interactions in Globular Clusters , 2017, 1712.06186.

[34]  Frederic A. Rasio,et al.  Binary Black Hole Mergers from Globular Clusters: Masses, Merger Rates, and the Impact of Stellar Evolution , 2016, 1602.02444.

[35]  Abraham Loeb,et al.  ELECTROMAGNETIC COUNTERPARTS TO BLACK HOLE MERGERS DETECTED BY LIGO , 2016, 1602.04735.

[36]  C. Rodriguez,et al.  Precessional dynamics of black hole triples: binary mergers with near-zero effective spin , 2017, Monthly Notices of the Royal Astronomical Society: Letters.

[37]  Bence Kocsis,et al.  Gravitational waves from scattering of stellar-mass black holes in galactic nuclei , 2008, 0807.2638.

[38]  Enrico Ramirez-Ruiz,et al.  THE FORMATION OF ECCENTRIC COMPACT BINARY INSPIRALS AND THE ROLE OF GRAVITATIONAL WAVE EMISSION IN BINARY–SINGLE STELLAR ENCOUNTERS , 2013, 1308.2964.

[39]  Johan Samsing,et al.  Eccentric Black Hole Mergers Forming in Globular Clusters , 2017, 1711.07452.

[40]  Richard O'Shaughnessy,et al.  COMPACT BINARY MERGER RATES: COMPARISON WITH LIGO/VIRGO UPPER LIMITS , 2015, 1510.04615.

[41]  D Huet,et al.  GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence , 2016 .

[42]  P. C. Peters Gravitational Radiation and the Motion of Two Point Masses , 1964 .

[43]  A. Riess,et al.  Did LIGO Detect Dark Matter? , 2016, Physical review letters.

[44]  Frederic A. Rasio,et al.  MERGING BLACK HOLE BINARIES IN GALACTIC NUCLEI: IMPLICATIONS FOR ADVANCED-LIGO DETECTIONS , 2016, 1606.04889.

[45]  T. Bulik,et al.  MOCCA-SURVEY Database - I. Coalescing binary black holes originating from globular clusters , 2016, 1608.02520.

[46]  William E. Harris,et al.  A Catalog of Parameters for Globular Clusters in the Milky Way , 1996 .

[47]  M. Giersz,et al.  Black Hole Mergers from Globular Clusters Observable by LISA and LIGO: Results from post-Newtonian Binary-Single Scatterings , 2018, 1802.08654.

[48]  Von Welch,et al.  Reproducing GW150914: The First Observation of Gravitational Waves From a Binary Black Hole Merger , 2016, Computing in Science & Engineering.

[49]  C. Haster,et al.  DYNAMICAL FORMATION OF THE GW150914 BINARY BLACK HOLE , 2016, 1604.04254.

[50]  D. Koutroumpa,et al.  SOLAR WIND CHARGE EXCHANGE EMISSION IN THE CHANDRA DEEP FIELD NORTH , 2013 .

[51]  B. A. Boom,et al.  GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2. , 2017, Physical review letters.

[52]  S. Chatterjee,et al.  Post-Newtonian Dynamics in Dense Star Clusters: Highly Eccentric, Highly Spinning, and Repeated Binary Black Hole Mergers. , 2017, Physical review letters.

[53]  Pavel Kroupa,et al.  Stellar-mass black holes in star clusters: implications for gravitational-wave radiation , 2009, Proceedings of the International Astronomical Union.

[54]  D. Elbaz,et al.  EVIDENCE FOR A WIDE RANGE OF ULTRAVIOLET OBSCURATION IN z ∼ 2 DUSTY GALAXIES FROM THE GOODS-HERSCHEL SURVEY , 2012, 1209.2707.

[55]  L. Wen On the Eccentricity Distribution of Coalescing Black Hole Binaries Driven by the Kozai Mechanism in Globular Clusters , 2002, astro-ph/0211492.

[56]  A. Robotham,et al.  An Empirical Mass Function Distribution , 2018, 1801.02723.

[57]  Bharath Pattabiraman,et al.  Binary Black Hole Mergers from Globular Clusters: Implications for Advanced LIGO. , 2015, Physical review letters.

[58]  D. Heggie,et al.  MOCCA code for star cluster simulations II: comparison with n-body simulations , 2011, 1112.6246.

[59]  J. Woo,et al.  A Systematic Search for Hidden Type 1 AGNs: Gas Kinematics and Scaling Relations , 2017, 1703.08901.

[60]  I. Mandel,et al.  DOUBLE COMPACT OBJECTS. II. COSMOLOGICAL MERGER RATES , 2013, 1308.1546.

[61]  C. Pankow,et al.  ILLUMINATING BLACK HOLE BINARY FORMATION CHANNELS WITH SPINS IN ADVANCED LIGO , 2016, 1609.05916.

[62]  Douglas C. Heggie,et al.  Binary evolution in stellar dynamics , 1975 .

[63]  A. Sesana Prospects for Multiband Gravitational-Wave Astronomy after GW150914. , 2016, Physical review letters.

[64]  L. G. Boté,et al.  Laser Interferometer Space Antenna , 2012 .

[65]  N. Narita,et al.  DEMONSTRATING HIGH-PRECISION, MULTIBAND TRANSIT PHOTOMETRY WITH MUSCAT: A CASE FOR HAT-P-14B , 2015, 1510.03997.

[66]  H. Nakano,et al.  Multiband gravitational-wave astronomy: Observing binary inspirals with a decihertz detector, B-DECIGO , 2018, Progress of Theoretical and Experimental Physics.

[67]  M. Bejger,et al.  On the possible gamma-ray burst–gravitational wave association in GW150914 , 2016, 1604.07132.

[68]  Bence Kocsis,et al.  Rapid and Bright Stellar-mass Binary Black Hole Mergers in Active Galactic Nuclei , 2016, 1602.03831.

[69]  M. Kamionkowski,et al.  Orbital eccentricities in primordial black hole binaries , 2016, 1606.07437.

[70]  Takahiro Tanaka,et al.  Primordial Black Hole Scenario for the Gravitational-Wave Event GW150914. , 2016, Physical review letters.

[71]  Ataru Tanikawa,et al.  Dynamical evolution of stellar mass black holes in dense stellar clusters: estimate for merger rate of binary black holes originating from globular clusters , 2013, 1307.6268.

[72]  Enrico Ramirez-Ruiz,et al.  Dissipative Evolution of Unequal-mass Binary–single Interactions and Its Relevance to Gravitational-wave Detections , 2017, 1706.03776.

[73]  A. Sesana The promise of multi-band gravitational wave astronomy , 2016, 1602.06951.