The Rise and Fall of Knapsack Cryptosystems

Cryptosystems based on the knapsack problem were among the first public key systems to be invented and for a while were considered to be among the most promising. However, essentially all of the knapsack cryptosystems that have been proposed so far have been broken. These notes outline the basic constructions of these cryptosystems and attacks that have been developed on them.

[1]  Andrew M. Odlyzko,et al.  Cryptanalytic attacks on the multiplicative knapsack cryptosystem and on Shamir's fast signature scheme , 1984, IEEE Trans. Inf. Theory.

[2]  Donald L. Kreher,et al.  Solving subset sum problems with the L^3 algorithm , 1988 .

[3]  Gilles Brassard,et al.  A note on the complexity of cryptography (Corresp.) , 1979, IEEE Trans. Inf. Theory.

[4]  Jeffrey C. Lagarias,et al.  Performance Analysis of Shamir's Attack on the Basic Merkle-Hellman Knapsack Cryptosystem , 1984, ICALP.

[5]  Ernest F. Brickell,et al.  Breaking Iterated Knapsacks , 1985, CRYPTO.

[6]  Jeffrey C. Lagarias,et al.  Solving low density subset sum problems , 1983, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).

[7]  Joos Vandewalle,et al.  A critical analysis of the security of knapsack public-key algorithms , 1984, IEEE Trans. Inf. Theory.

[8]  E. Brickell,et al.  Cryptanalysis: a survey of recent results , 1988, Proc. IEEE.

[9]  Alan M. Frieze,et al.  On the Lagarias-Odlyzko Algorithm for the Subset Sum Problem , 1986, SIAM J. Comput..

[10]  Ronald L. Rivest,et al.  A Knapsack Type Public Key Cryptosystem Based On Arithmetic in Finite Fields , 1984, CRYPTO.

[11]  Hendrik W. Lenstra,et al.  Integer Programming with a Fixed Number of Variables , 1983, Math. Oper. Res..

[12]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[13]  Ravi Kannan,et al.  Succinct Certificates for Almost All Subset Sum Problems , 1989, SIAM J. Comput..

[14]  Adi Shamir,et al.  A polynomial time algorithm for breaking the basic Merkle-Hellman cryptosystem , 1984, 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982).

[15]  Jeffrey C. Lagarias,et al.  Knapsack Public Key Cryptosystems and Diophantine Approximation , 1983, CRYPTO.

[16]  Helmut Lagger,et al.  Trapdoors in Knapsack Cryptosystems , 1982, EUROCRYPT.

[17]  Claus-Peter Schnorr,et al.  A More Efficient Algorithm for Lattice Basis Reduction , 1988, J. Algorithms.

[18]  Yvo Desmedt,et al.  What Happened with Knapsack Cryptographic Schemes , 1988 .

[19]  László Lovász,et al.  Factoring polynomials with rational coefficients , 1982 .

[20]  C. P. Schnorr,et al.  A Hierarchy of Polynomial Time Lattice Basis Reduction Algorithms , 1987, Theor. Comput. Sci..

[21]  Martin E. Hellman,et al.  Hiding information and signatures in trapdoor knapsacks , 1978, IEEE Trans. Inf. Theory.

[22]  Ernest F. Brickell,et al.  Solving Low Density Knapsacks , 1983, CRYPTO.

[23]  Leonard M. Adleman,et al.  On breaking generalized knapsack public key cryptosystems , 1983, STOC.