Termination by Abstraction

Abstraction can be used very effectively to decompose and simplify termination arguments. If a symbolic computation is nonterminating, then there is an infinite computation with a top redex, such that all redexes are immortal, but all children of redexes are mortal. This suggests applying weakly-monotonic well-founded relations in abstraction-based termination methods, expressed here within an abstract framework for term-based proofs. Lexicographic combinations of orderings may be used to match up with multiple levels of abstraction.

[1]  Michel Sintzoff,et al.  Calculating properties of programs by valuations on specific models , 1972, Proving Assertions About Programs.

[2]  Robert W. Floyd,et al.  Assigning Meanings to Programs , 1993 .

[3]  David Gries,et al.  Is Sometimes Ever Better Than Always? , 1978, TOPL.

[4]  Nachum Dershowitz,et al.  Commutation, Transformation, and Termination , 1986, CADE.

[5]  William W. Tait,et al.  Intensional interpretations of functionals of finite type I , 1967, Journal of Symbolic Logic.

[6]  Enno Ohlebusch,et al.  TALP: A Tool for the Termination Analysis of Logic Programs , 2000, RTA.

[7]  John P. Gallagher,et al.  One Loop at a Time , 2003 .

[8]  Jean-Pierre Jouannaud,et al.  Rewrite Systems , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.

[9]  Ben Wegbreit,et al.  Property extraction in well-founded property sets , 1975, IEEE Transactions on Software Engineering.

[10]  Nachum Dershowitz,et al.  A General Framework for Automatic Termination Analysis of Logic Programs , 2000, Applicable Algebra in Engineering, Communication and Computing.

[11]  Robin Milner,et al.  On Observing Nondeterminism and Concurrency , 1980, ICALP.

[12]  Nachum Dershowitz Termination of Linear Rewriting Systems (Preliminary Version) , 1981, ICALP.

[13]  J. Paris,et al.  Accessible Independence Results for Peano Arithmetic , 1982 .

[14]  Enno Ohlebusch,et al.  Term Rewriting Systems , 2002 .

[15]  Nachum Dershowitz,et al.  Goal-Directed Equation Solving ” , 1999 .

[16]  Alan Bundy,et al.  Logic Program Synthesis via Proof Planning , 1992, LOPSTR.

[17]  Michael Hanus,et al.  The Integration of Functions into Logic Programming: From Theory to Practice , 1994, J. Log. Program..

[18]  Nachum Dershowitz,et al.  Equational programming , 1988 .

[19]  Vijay Saraswat,et al.  Logic Programming, Proceedings of the 1991 International Symposium, San Diego, California, USA, Oct. 28 - Nov 1, 1991 , 1991, ILPS.

[20]  A. M. Turing,et al.  Checking a large routine , 1989 .

[21]  Nachum Dershowitz,et al.  Chapter 9 – Rewriting , 2001 .

[22]  Nachum Dershowitz Orderings for Term-Rewriting Systems , 1979, FOCS.

[23]  Patrick Cousot,et al.  Abstract interpretation: a unified lattice model for static analysis of programs by construction or approximation of fixpoints , 1977, POPL.

[24]  Jörg H. Siekmann,et al.  8th International Conference on Automated Deduction , 1986, Lecture Notes in Computer Science.

[25]  Leon Sterling,et al.  Meta-Level Inference and Program Verification , 1982, CADE.

[26]  Zohar Manna,et al.  Mathematical Theory of Computation , 2003 .

[27]  Alan Robinson,et al.  Handbook of automated reasoning , 2001 .

[28]  G. M. Clemence,et al.  Blow up of smooth solutions to the barotropic compressible magnetohydrodynamic equations with finite mass and energy , 2008, 0811.4359.

[29]  Jean-Marie Hullot,et al.  Canonical Forms and Unification , 1980, CADE.

[30]  Simon Kaplan,et al.  Conditional Term Rewriting Systems , 1987, Lecture Notes in Computer Science.

[31]  Zohar Manna,et al.  A closer look at termination , 1975, Acta Informatica.

[32]  Nachum Dershowitz,et al.  Termination of Rewriting , 1987, J. Symb. Comput..

[33]  Zohar Manna,et al.  Proving termination with multiset orderings , 1979, CACM.

[34]  Danny De Schreye,et al.  Deriving Termination Proofs for Logic Programs, Using Abstract Procedures , 1991, ICLP.

[35]  David A. Plaisted,et al.  Semantic Confluence Tests and Completion Methods , 1985, Inf. Control..

[36]  Jan Willem Klop,et al.  Term Rewriting Systems: From Church-Rosser to Knuth-Bendix and Beyond , 1990, ICALP.

[37]  Hans Zantema,et al.  Termination of Logic Programs Using Semantic Unification , 1995, LOPSTR.

[38]  Nachum Dershowitz,et al.  Natural Termination , 1995, Theor. Comput. Sci..

[39]  Françoise Bellegarde,et al.  Termination by completion , 1990, Applicable Algebra in Engineering, Communication and Computing.

[40]  J. Van Leeuwen,et al.  Handbook of theoretical computer science - Part A: Algorithms and complexity; Part B: Formal models and semantics , 1990 .

[41]  Jürgen Giesl,et al.  Termination of term rewriting using dependency pairs , 2000, Theor. Comput. Sci..

[42]  Yehoshua Sagiv A Termination Test for Logic Programs , 1991, ISLP.

[43]  Jacques Chabin,et al.  Narrowing Directed by a Graph of Terms , 1991, RTA.

[44]  Albert Rubio,et al.  Complete Monotonic Semantic Path Orderings , 2000, CADE.

[45]  Michael Codish,et al.  A Semantic Basis for the Termination Analysis of Logic Programs , 1999, J. Log. Program..

[46]  Nachum Dershowitz,et al.  Orderings for term-rewriting systems , 1979, 20th Annual Symposium on Foundations of Computer Science (sfcs 1979).

[47]  Danny De Schreye,et al.  Termination of Logic Programs: The Never-Ending Story , 1994, J. Log. Program..

[48]  Alfons Geser,et al.  An Improved General Path Order , 1996, Applicable Algebra in Engineering, Communication and Computing.

[49]  Alexander Serebrenik,et al.  Termination Analysis of Logic Programs: Extended Abstract , 2003, ICLP.

[50]  Neil D. Jones,et al.  The size-change principle for program termination , 2001, POPL '01.

[51]  Nachum Dershowitz,et al.  Confluence of Conditional Rewrite Systems , 1988, CTRS.

[52]  David A. McAllester,et al.  Automated Deduction - CADE-17 , 2000, Lecture Notes in Computer Science.

[53]  Jürgen Giesl,et al.  Dependency Pairs for Equational Rewriting , 2001, RTA.